SOME RESULTS ENVOLVING THE CONCEPTS OF MOMENT GENERATING FUNCTION AND AFFINITY BETWEEN DISTRIBUTION FUNCTIONS. EXTENSION FOR $r \boldsymbol{k}$-DIMENSIONAL NORMAL DISTRIBUTION FUNCTIONS

A. DORIVAL CAMPOS
Universidade de São Paulo

Abstract

We present a function $\rho\left(F_{1}, F_{2}, t\right)$ which contains Matusita's affinity and express the «affinity» between moment generating functions. An interesting result is expressed through decomposition of this «affinity» $\rho\left(F_{1}, F_{2}, t\right)$ when the functions considered are k-dimensional normal distributions. The same decomposition remains true for others families of distribution functions. Generalizations of these results are also presented.

Keywords: Affinity, moment generating functions, distance, inner product, multivariate normal distributions, probability density functions, absolutely convergent.

AMS Classification (MSC 2000): primary 62E99, secondary 62H20.

[^0]
1. INTRODUCTION AND PRELIMINARIES

Let F_{1} and F_{2} be two distribution functions defined on \mathbb{R} and let us denote by $f_{i}(x)$ the probability density function of F_{i} with respect to a measure m in \mathbb{R}, for $i=1,2$.

We find in the literature several forms of defining distance between distributions of a same class. Matusita (1955) by making use of the distance function denoted by $d\left(F_{1}, F_{2}\right)$ and expressed by

$$
d\left(F_{1}, F_{2}\right)=\left\{\left(f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x), f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x)\right)\right\}^{1 / 2}
$$

introduced in the statistical literature the concept of affinity between the distributions F_{1} and F_{2} denoted by $\rho_{2}\left(F_{1}, F_{2}\right)$ and defined by

$$
\rho_{2}\left(F_{1}, F_{2}\right)=\left(f_{1}^{1 / 2}(x), f_{2}^{1 / 2}(x)\right)
$$

which is related to $d\left(F_{1}, F_{2}\right)$ through the expression

$$
d^{2}\left(F_{1}, F_{2}\right)=2\left\{1-\rho_{2}\left(F_{1}, F_{2}\right)\right\}
$$

where (f, g) denotes the inner product of $f(x)$ and $g(x)$ defined by:

$$
(f, g)=\int_{\mathbb{R}} f(x) g(x) d m
$$

The importance and usefulness of the notions of distance and affinity between distributions, in statistics, were stressed in a series of papers by Matusita (1954, 1955, 1956, 1961, 1964, 1967b, 1973), Matusita \& Motoo (1955), Matusita \& Akaike (1956), Khan \& Ali (1971) and others.

Concrete expressions for the affinity between two multivariate normal distributions were established by Matusita (1966). As a following step, Matusita (1967) extended the notion of affinity to cover the case where there are r distributions involved and established concrete expressions when the r distributions are k-dimensional normal.

Our work is characterized by the introduction of the concept of a function, denoted by $P(t)$, functionally expressed through the moment generating functions relative to the distributions considered and another expression denoted by $\rho\left(F_{1}, F_{2}, t\right)$ that contains as a particular case the affinity between the distribution functions F_{1} and F_{2}, or in other words, express the «affinity» between the moment generating functions relative to F_{1} and F_{2}. We also present a result that express the decomposition of $\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)$ in a product of two factors identified as the affinity and the moment generating function when F_{1} and F_{2} are k-dimensional normal distributions. This result is extended to cover the case where there are $r k$-dimensional normal distributions.

In this same way, the concept of a more general function $D_{r}\left(s_{1}, \ldots, s_{r} ;{\underset{j}{j}}_{t}\right)$ is introduced, and the results obtained through it contains those developed in this paper as those ones established by Matusita (1966, 1967a) and Campos (1978).

2. RESULTS

Definition 1. Let F_{1} and F_{2} be two distribution functions belonging to the same class and let $f_{1}(x)$ and $f_{2}(x)$ their respective probability density functions with respect to a measure m defined on \mathbb{R}. Let us suppose that there is a scalar $t,-h \leqslant t \leqslant h$ $(h>0)$ such that the integral below, defined through the inner product, is absolutely convergent.

Now, we define:
(2.1)

$$
P(t)=\left(\exp \{t x / 2\}\left\{f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x)\right\}, \exp \{t x / 2\}\left\{f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x)\right\}\right)
$$

where (f, g) denotes the inner product of $f(x)$ and $g(x)$, defined by:

$$
(f, g)=\int_{\mathbb{R}} f(x) g(x) d m
$$

From (2.1), we obtain:

$$
P(t)=M_{1}(t)+M_{2}(t)-2 \rho\left(F_{1}, F_{2}, t\right)
$$

where:
$M_{i}(t)$ represent the moment generating function for the distribution F_{i} whose probability density function is $f_{i}(x), i=1,2$;
and

$$
\begin{equation*}
\rho\left(F_{1}, F_{2}, t\right)=\left(\exp \{t x / 2\} f_{1}^{1 / 2}(x), \exp \{t x / 2\} f_{2}^{1 / 2}(x)\right) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we verify that:
i) $P(0)=d^{2}\left(F_{1}, F_{2}\right)$,
ii) $F_{1}=F_{2}$ implies $P(t)=0$ for all $-h \leqslant t \leqslant h$
iii) $\rho\left(F_{1}, F_{2}, 0\right)=\rho_{2}\left(F_{1}, F_{2}\right)$
iv) $F_{1}=F_{2}=F$ implies $\rho(F, t)=M(t)$
where:

$$
d^{2}\left(F_{1}, F_{2}\right)=\left(f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x), f_{1}^{1 / 2}(x)-f_{2}^{1 / 2}(x)\right)
$$

and $\rho_{2}\left(F_{1}, F_{2}\right)$ is the affinity between the distributions F_{1} and F_{2} as defined by Matusita (1966).

Teorema 1. Let F_{1} and F_{2} be k-dimensional nonsingular normal distributions, whose probability density functions are given by:

$$
(2 \pi)^{-k / 2}|\underset{\sim}{A}|^{1 / 2} \exp \left\{-1 / 2\left({\underset{\sim}{A}}^{-1}(\underset{\sim}{x}-\underset{\sim}{a}), \underset{\sim}{x}-\underset{\sim}{a}\right)\right\}
$$

and

$$
(2 \pi)^{-k / 2}|\underset{\sim}{B}|^{-1 / 2} \exp \left\{-1 / 2\left({\underset{\sim}{B}}^{-1}(\underset{\sim}{x}-\underset{\sim}{b}), \underset{\sim}{x}-\underset{\sim}{b}\right)\right\}
$$

respectively, where:
$\underset{\sim}{x}$ is a k-dimensional (column vector);
$\underset{\sim}{A}$ and $\underset{\sim}{B}$ are covariance matrices de degree K and $\underset{\sim}{a}, \underset{\sim}{b}$ are k-dimensional mean (column) vectors.

In these conditions, we have:

$$
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)=\rho_{2}\left(F_{1}, F_{2}\right) \cdot M_{G}(\underset{\sim}{t})
$$

where:
$\underset{\sim}{t}$ is k-dimensional (column) vector and
$M_{G}(\underset{\sim}{t})$ is the moment generating function of a k-dimensional normal distribution with mean vector ${\underset{\sim}{C}}^{-1}\left(\underset{\sim}{A}{\underset{\sim}{1}}_{a}^{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right)$ and covariance matrix $2 \underset{\sim}{C^{-1}}$, given by

$$
\begin{equation*}
M_{G}(\underset{\sim}{t})=\exp \left\{\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right), \underset{\sim}{t}\right)+\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)\right\} \tag{2.3}
\end{equation*}
$$

with $\underset{\sim}{C}={\underset{\sim}{A}}^{-1}+{\underset{\sim}{B}}^{-1}$.

Proof: From (2.2), we have:

$$
\begin{equation*}
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)=(2 \pi)^{-k / 2}|\underset{\sim}{A} \underset{\sim}{B}|^{-1 / 4} \int_{\mathbb{R}^{k}} \exp \{-1 / 4 Q\} d x_{1}, \ldots, d x_{k} \tag{2.4}
\end{equation*}
$$

where:

$$
Q=\left({\underset{\sim}{A}}^{-1}(\underset{\sim}{x}-\underset{\sim}{a}), \underset{\sim}{x}-\underset{\sim}{a}\right)+\left({\underset{\sim}{B}}^{-1}(\underset{\sim}{x}-\underset{\sim}{b}), \underset{\sim}{x}-\underset{\sim}{b}\right)-4(\underset{\sim}{x},, \underset{\sim}{t})
$$

By working with this algebraic sum of inner products, we obtain:
(2.5) $Q=\left(\left({\underset{\sim}{A}}^{-1}+{\underset{\sim}{B}}^{-1}\right) \underset{\sim}{x}, \underset{\sim}{x}\right)-2\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}, \underset{\sim}{x}\right)+\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}, \underset{\sim}{a}\right)+\left({\underset{\sim}{B}}^{-1} \underset{\sim}{b}, \underset{\sim}{b}\right)$

If we define the transformation:

$$
\underset{\sim}{y}=C_{\sim}^{1 / 2} \underset{\sim}{x}
$$

with $\underset{\sim}{C}={\underset{\sim}{A}}^{-1}+{\underset{\sim}{B}}^{-1}$ and Jacobian equal to $\bmod |\underset{\sim}{C}|^{-1 / 2}$, (2.5) may be written as follows:

$$
Q=(\underset{\sim}{y}, \underset{\sim}{y})-2\left({\underset{\sim}{C}}^{-1 / 2}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right), \underset{\sim}{y}\right)+\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}, \underset{\sim}{a}\right)+\left({\underset{\sim}{B}}^{-1} b \underset{\sim}{b} \underset{\sim}{b}\right)
$$

That is,
(2.6) $Q=Q_{1}-\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right),{\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right)+\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}, \underset{\sim}{a}\right)+\left(B^{-1} \underset{\sim}{b}, \underset{\sim}{b}\right)$
where:

$$
Q_{1}=\left(\underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right), \underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right)\right)
$$

We have also:

$$
\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}, \underset{\sim}{a}\right)=\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a},{\underset{\sim}{C}}^{-1}{\underset{\sim}{A}}^{-1} \underset{\sim}{a}\right)+\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a},{\underset{\sim}{C}}^{-1}{\underset{\sim}{B}}^{-1} \underset{\sim}{a}\right)
$$

and

$$
\left({\underset{\sim}{B}}^{-1} \underset{\sim}{b}, \underset{\sim}{b}\right)=\left({\underset{\sim}{B}}^{-1} \underset{\sim}{b},{\underset{\sim}{C}}^{-1}{\underset{\sim}{A}}^{-1} \underset{\sim}{b}\right)+\left({\underset{\sim}{B}}^{-1} \underset{\sim}{b},{\underset{\sim}{C}}^{-1}{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right)
$$

By using these results in (2.6), we obtain, after same algebraic manipulations:

$$
\begin{align*}
& Q=Q_{1}-\left({\underset{\sim}{C}}^{-1}{\underset{\sim}{B}}^{-1} \underset{\sim}{b},{\underset{\sim}{A}}^{-1} \underset{\sim}{a}\right)-\left({\underset{\sim}{C}}^{-1}{\underset{\sim}{A}}^{-1} \underset{\sim}{a},{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right)+\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a},{\underset{\sim}{C}}^{-1}{\underset{\sim}{B}}^{-1} \underset{\sim}{a}\right)+ \tag{2.7}\\
& \left({\underset{\sim}{B}}^{-1} \underset{\sim}{b},{\underset{\sim}{C}}^{-1}{\underset{\sim}{A}}^{-1} \underset{\sim}{b}\right)+\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} a+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}+2 \underset{\sim}{t}\right), 2 \underset{\sim}{t}\right)-\left(2{\underset{\sim}{C}}^{-1} \underset{\sim}{t},{\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right)
\end{align*}
$$

From (2.7), it follows that:

$$
\begin{aligned}
Q & =Q_{1}+\left((\underset{\sim}{B} \underset{\sim}{C} \underset{\sim}{A})^{-1} \underset{\sim}{b}, \underset{\sim}{b}-\underset{\sim}{a}\right)-\left(\left({\underset{\sim}{A}}_{A}^{C} \underset{\sim}{B}\right)^{-1} \underset{\sim}{a}, \underset{\sim}{b}-\underset{\sim}{a}\right)- \\
& -4\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right), \underset{\sim}{t}\right)-4\left({\underset{\sim}{C}}^{-1}\right)
\end{aligned}
$$

Since $\underset{\sim}{C}={\underset{\sim}{A}}^{-1}+{\underset{\sim}{B}}^{-1}$, we have:

$$
\underset{\sim}{A} \underset{\sim}{C} \underset{\sim}{B}=\underset{\sim}{B} \underset{\sim}{C} \underset{\sim}{A}=\underset{\sim}{A}
$$

Or,
(2.8) $Q=Q_{1}+\left((\underset{\sim}{A}+\underset{\sim}{B})^{-1}(\underset{\sim}{b}-\underset{\sim}{a}), \underset{\sim}{b}-\underset{\sim}{a}\right)-4\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right), \underset{\sim}{t}\right)-4\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)$

Using (2.8) in (2.4), we obtain:
(2.9)

$$
\begin{aligned}
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)= & (2 \pi)^{-k / 2}|\underset{\sim}{A} \underset{\sim}{B}|^{-1 / 4} \exp \left\{-1 / 4\left((\underset{\sim}{A}+\underset{\sim}{B})^{-1}(\underset{\sim}{b}-\underset{\sim}{a}), \underset{\sim}{b}-\underset{\sim}{a}\right)\right\} \\
& \exp \left\{\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right), \underset{\sim}{t}\right)+\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)\right\} \\
& \int_{\mathbb{R}^{k}} \exp \left\{-\frac{1}{4} Q_{1}\right\}|\underset{\sim}{C}|^{-1 / 2} d y_{1}, \ldots, d y_{k}
\end{aligned}
$$

We easily verify that:

$$
\int_{\mathbb{R}^{k}} \exp \left\{-\frac{1}{4} Q_{1}\right\} d y_{1}, \ldots, d y_{k}=2^{k / 2}(2 \pi)^{k / 2}
$$

Or,

$$
\begin{align*}
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right) & =|\underset{\sim}{A} \underset{\sim}{B}|^{1 / 4}\left|\frac{1}{2}(\underset{\sim}{A}+\underset{\sim}{B})\right|^{-1 / 2} \exp \left\{-1 / 4\left((\underset{\sim}{A}+\underset{\sim}{B})^{-1}(\underset{\sim}{b}-\underset{\sim}{a}), \underset{\sim}{b}-\underset{\sim}{a}\right)\right\} . \tag{2.10}\\
& \cdot \exp \left\{\left({\underset{\sim}{C}}^{-1}\left({\underset{\sim}{A}}^{-1} \underset{\sim}{a}+{\underset{\sim}{B}}^{-1} \underset{\sim}{b}\right), \underset{\sim}{t}\right)+\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)\right\}
\end{align*}
$$

since

$$
|\underset{\sim}{C}|^{-1 / 2}=|\underset{\sim}{A}|^{1 / 2}|\underset{\sim}{A}+\underset{\sim}{B}|^{-1 / 2}|\underset{\sim}{B}|^{1 / 2}
$$

It follows from theorem demonstrated by Matusita and (2.3) that (2.10) may be written as:

$$
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)=\rho_{2}\left(F_{1}, F_{2}\right) M_{G}(\underset{\sim}{t})
$$

Corolary 1. When $\underset{\sim}{A}=B$ it follows that

$$
\rho\left(F_{1}, F_{2}, \underset{\sim}{t}\right)=\exp \left\{-1 / 8\left({\underset{\sim}{A}}^{-1}(\underset{\sim}{b}-\underset{\sim}{a}), \underset{\sim}{b}-\underset{\sim}{a}\right)\right\} M_{G}(\underset{\sim}{t})
$$

where:

$$
M_{G}(\underset{\sim}{t})=\exp \{(1 / 2(\underset{\sim}{a}+\underset{\sim}{b}), \underset{\sim}{t})+1 / 2(\underset{\sim}{A} \underset{\sim}{t}, \underset{\sim}{t})\}
$$

Corolary 2. If $\underset{\sim}{a}=\underset{\sim}{b}$ it follows that:

$$
\rho\left(F_{1}, F_{2}, \underline{t}\right)=\left.\left|\underset{\sim}{A}{\underset{\sim}{B}}^{1 / 4}\right| \frac{1}{2}(\underset{\sim}{A}+\underset{\sim}{B})\right|^{-1 / 2} \exp \left\{(\underset{\sim}{a}, t)+\left({\underset{C}{C}}^{-1} t, t\right)\right\}
$$

Corolary 3. For $F_{1}=F_{2}=F$, we have:

$$
\rho(F, \underset{\sim}{t})=\exp \{(\underset{\sim}{a}, \underset{\sim}{t})+1 / 2(\underset{\sim}{A} \underset{\sim}{t}, \underset{\sim}{t})\}=M_{X}(\underset{\sim}{t})
$$

where $M_{X}(\underset{\sim}{t})$ is the moment generating function of F.
The conclusion (result) of theorem 1 is naturally generalized for $r k$-dimensional normal distributions. To accomplish this objective, we first generalize the concept of $\rho\left(F_{1}, F_{2}, t\right)$, by considering r distributions F_{1}, \ldots, F_{r}, defined over the same space \mathbb{R}, with probability density functions $f_{1}(x), \ldots, f_{r}(x)$ with respect to a measure on \mathbb{R}, and let us suppose that the integral below be absolutely convergent. Then we define:

Definition 2

$$
\rho\left(F_{1}, \ldots, F_{r}, t\right)=\int_{\mathbb{R}}\left\{\prod_{j=1}^{r} \exp (t x) f_{j}(x)\right\}^{1 / r} d m
$$

If F_{1}, \ldots, F_{r} denote $r k$ - dimensional non singular normal distributions whose probability density functions are given for $j=1, \ldots, r$ by

$$
\begin{equation*}
(2 \pi)^{-k / 2}\left|{\underset{\sim}{j}}^{A}\right|^{-1 / 2} \exp \left\{-1 / 2\left({\underset{\sim}{j}}_{j}^{A_{j}^{-1}}\left(\underset{\sim}{x}-\underset{\sim_{j}}{a}\right), \underset{\sim}{x}-\underset{\sim_{j}}{a}\right)\right\} \tag{2.11}
\end{equation*}
$$

where $\underset{\sim}{A}$ is the covariance matrix and $\underset{\sim}{a}$ the mean vector of F_{j}, respectively, we have the following result whose proof we omit:

Theorem 2

$$
\rho\left(F_{1}, \ldots, F_{r}, \underset{\sim}{t}\right)=\rho_{r}\left(F_{1}, \ldots, F_{r}\right) M_{G}(\underset{\sim}{t})
$$

where

$$
\begin{aligned}
& \rho_{r}\left(F_{1}, \ldots, F_{r}\right)=\left\{\prod_{j=1}^{r}|\underset{\sim}{A}|^{-1 / 2 r}\right\}\left|\frac{1}{r} \sum_{j=1}^{r} \underset{\sim_{j}}{A_{j}^{-1}}\right|^{-1 / 2} \\
& \exp \left\{-1 / 2 r\left\{\sum _ { \substack { j = 2 \\
l \leqslant i < j } } ^ { r } \left(\left(\underset{\sim_{j}}{A} \underset{\sim}{D} \underset{\sim_{i}}{A}\right)^{-1} \underset{\sim_{j}}{a}, \underset{\sim_{j}}{a}-\underset{c_{i}}{a}-\right.\right.\right. \\
& \left.\left.\sum_{\substack{i=1 \\
i<j \leqslant r}}^{r-1}\left(\left({\underset{\sim}{r}}_{i}^{A} \underset{\sim}{D} \underset{\sim_{j}}{A}\right)^{-1} \underset{\sim_{i}}{a},{\underset{\sim}{j}}_{a}^{a}-\underset{\sim_{i}}{a}\right)\right\}\right\}
\end{aligned}
$$

is the affinity between $r k$-dimensional normal (non singular) distributions obtained by Matusita (1967a) and expressed in another form by Campos (1978); and

$$
M_{G}(\underset{\sim}{t})=\exp \left\{\left({\underset{\sim}{D}}^{-1}\left(\sum_{j=1}^{r}{\underset{\sim}{j}}_{A_{j}^{-1}}^{{\underset{\sim}{j}}_{j}^{a}}\right), \underset{\sim}{t}\right)+\frac{1}{2}\left(r{\underset{\sim}{D}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)\right\}
$$

is the moment generating functions of a k-dimensional normal distribution with mean vector ${\underset{\sim}{D}}^{-1}\left(\sum_{j=1}^{r}{\underset{\sim}{j}}_{j}^{-1} \underset{\sim}{a} \underset{j}{a}\right)$ and covariance matrix $r{\underset{\sim}{D}}^{-1}$ with $\underset{\sim}{D}=\sum_{j=1}^{r}{\underset{\sim}{j}}_{j}^{-1}$ and $\underset{\sim}{t}$ a k-dimensional (column) vector.

With the objective of generalizing these results, as those obtained by Matusita (1966, 1967a) or Campos (1978) we introduce the following definition.

Definition 3. Let F_{1}, \ldots, F_{r} be multivariate distributions defined on the same space \mathbb{R} and let $f_{1}(x), \ldots, f_{r}(x)$ be their respective probability density functions. Let us suppose that there are r scalars s_{1}, \ldots, s_{r} such that:

$$
\sum_{j=1}^{r} s_{j}=1 \quad \text { and } \quad 0 \leqslant s_{j} \leqslant 1 \quad \text { for } \quad j=1, \ldots, r
$$

In these conditions, and if the integral below is absolutely convergent, we define:

$$
D_{r}\left(s_{1}, \ldots, s_{r},{\underset{j}{j}}_{t}^{j}\right)=\int_{\mathbb{R}^{k}} \prod_{j=1}^{r} \exp \left\{s_{j}(\underset{\sim}{x}, \underset{\sim}{t})\right\} f_{j}^{s_{j}}(x) d x_{1} \ldots d x_{k}
$$

where $\underset{\sim}{f} \underset{j}{t}$ is a k-dimensional (column) vector with components $t_{j_{1}}, \ldots, t_{j_{k}}, j=1, \ldots, r$.
If F_{1}, \ldots, F_{r} denote k-dimensional normal (non singular) distributions defined as (2.11) we establish the following result:

Theorem 3

$$
\begin{equation*}
D_{r}\left(s_{1}, \ldots, s_{r} ;{\underset{\sim}{j}}_{t}^{)}=D_{r}\left(s_{1}, \ldots, s_{r}\right) M_{G}\left(\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}^{t}\right)\right. \tag{2.12}
\end{equation*}
$$

where:
(2.13)

$$
\begin{aligned}
& D_{r}\left(s_{1}, \ldots, s_{r}\right)=\left\{\prod_{j=1}^{r}|\underset{\sim}{A}|^{-s_{j} / 2}\right\}\left|\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}_{j}^{-1}\right|^{-1 / 2} \\
& \exp \left\{-1 / 2\left\{\sum_{\substack{j=2 \\
l \leqslant i<j}}^{r}\left(s_{i} s_{j}\left(\underset{\sim}{j} \underset{j_{i}}{C} \underset{\sim_{i}}{A}\right)^{-1} \underset{\sim}{a}, \underset{\sim_{j}}{a}-\underset{\sim}{a}\right)-\right.\right. \\
& \left.\left.-\quad \sum_{\substack{i=1 \\
i<j \leqslant r}}^{r}\left(s_{i} s_{j}\left({\underset{\sim}{i}}^{A} \underset{\sim}{C} \underset{\tilde{j}_{j}}{A}\right)^{-1} \underset{\sim_{i}}{a}, \underset{\sim_{j}}{a}-\underset{c_{i}}{a}\right)\right\}\right\}
\end{aligned}
$$

and $M_{G}\left(\sum_{j=1}^{r} s_{j} \underset{{ }_{j}}{t}\right)$ is the moment generating function for a k-dimensional normal distribution with mean vector $\underset{\sim}{C}\left(\sum_{j=1}^{r} s_{j} \underset{\sim}{A_{j}}{ }_{j}^{-1} \underset{\sim}{a} \underset{j}{a}\right)$ and covariance matrix ${\underset{\sim}{C}}^{-1}$, expressed by:

$$
\begin{align*}
M_{G}\left(\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}_{t}^{t}\right) & =\exp \left\{\left({\underset{\sim}{C}}^{-1}\left(\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}_{j}^{A-1} \underset{\sim_{j}}{a}\right), \sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}^{t}\right)+\right. \tag{2.14}\\
& \left.+\left(1 / 2{\underset{\sim}{C}}^{-1}\left(\sum_{j=1}^{r} s_{j} \underset{\sim_{j}}{t}\right), \sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}_{t}^{t}\right)\right\}
\end{align*}
$$

with $\underset{\sim}{C}=\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}_{j}^{A-1}$.

Proof: By the definition 3, we have:
(2.15)

$$
D_{r}\left(s_{1}, \ldots, s_{r} ; \underset{\sim}{t}\right)=(2 \pi)^{-k / 2} \prod_{j=1}^{r}\left|\underset{\sim_{j}}{A}\right|^{-s_{j} / 2} \int_{\mathbb{R}^{k}} \exp \left\{-\frac{1}{2} Q\right\} d x_{1} \ldots d x_{k}
$$

where

$$
\left.Q=\sum_{j=1}^{r} s_{j}\left({\underset{\sim}{j}}_{A_{j}^{-1}}^{(\underset{\sim}{x}-\underset{\sim}{a}}\right), \underset{\sim}{x}-\underset{\sim_{j}}{a}\right)-2 \sum_{j=1}^{r} s_{j}\left(\underset{\sim}{x}, \underset{\sim_{j}}{t}\right)
$$

That is,

$$
\begin{equation*}
Q=(\underset{\sim}{C} \underset{\sim}{x}, \underset{\sim}{x})-2(\underset{\sim}{b}, \underset{\sim}{x})-2(\underset{\sim}{t}, \underset{\sim}{x})+\sum_{j=1}^{r}\left(s_{j} \underset{\sim}{A_{j}}{\underset{\sim}{x}}^{a} \underset{\sim}{a}, \underset{\sim}{a}\right) \tag{2.16}
\end{equation*}
$$

with

$$
\underset{\sim}{b}=\sum_{j=1}^{r} s_{j}{\underset{\sim}{\sim}}_{j}^{-1} \underset{\sim}{a}
$$

and

$$
\underset{\sim}{t}=\sum_{j=1}^{r} s_{j} \underset{\underbrace{}_{j}}{t}
$$

After the transformation

$$
\underset{\sim}{y}={\underset{\sim}{C}}^{1 / 2} \underset{\sim}{x}
$$

whose Jacobian is $\bmod |\underset{\sim}{C}|^{-1 / 2}$ and same intermediate steps, (2.16) may be written

$$
\begin{align*}
Q & =\left(\underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}(\underset{\sim}{b}+\underset{\sim}{t}), \underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}(\underset{\sim}{b}+\underset{\sim}{t})\right)-\left({\underset{\sim}{C}}^{-1} \underset{\sim}{b}, \underset{\sim}{t}\right)- \\
& -\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{b}\right)-\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)+\sum_{j=1}^{r}\left(s_{j}{\underset{\sim}{j}}_{j}^{-1} \underset{\sim_{j}}{a}, \underset{\sim_{j}}{a}\right)-\left({\underset{\sim}{C}}^{-1} \underset{\sim}{b}, \underset{\sim}{b}\right) \tag{2.17}
\end{align*}
$$

One may also prove that:

$$
\begin{aligned}
& \sum_{j=1}^{r}\left(s_{j} \underset{\sim_{j}}{A_{j}^{-1}} \underset{\sim}{a}, \underset{\sim_{j}}{a}\right)-\left({\underset{\sim}{C}}^{-1} \underset{\sim}{b}, \underset{\sim}{b}\right)=\sum_{\substack{j=2 \\
l \leqslant i<j}}^{r}\left(s_{i} s_{j}\left(\underset{\sim}{f} \underset{\sim_{i}}{C} \underset{\sim_{i}}{A}\right)^{-1} \underset{\sim_{j}}{a}, \underset{j_{j}}{a}-\underset{\sim_{i}}{a}\right)-
\end{aligned}
$$

On applying this result, (2.17) is expressed as:

$$
\begin{equation*}
Q=Q_{3}+Q_{1}-Q_{2}-2\left({\underset{\sim}{C}}^{-1} \underset{\sim}{b}, \underset{\sim}{t}\right)-\left({\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right) \tag{2.18}
\end{equation*}
$$

where:

$$
\begin{aligned}
& Q_{3}=\left(\underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}(\underset{\sim}{b}+\underset{\sim}{t}), \underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}(\underset{\sim}{b}+\underset{\sim}{t})\right) \\
& Q_{1}=\sum_{\substack{j=2 \\
l \leqslant i<j}}^{r}\left(s_{i} s_{j}\left({\underset{\sim}{j}}_{A}^{A} \underset{\sim}{C} \underset{i}{A}\right)^{-1} \underset{\sim_{j}}{a}, \underset{\sim_{j}}{a}-{\underset{\sim}{i}}_{a}^{a}\right) \text { and } \\
& Q_{2}=\sum_{\substack{i=1 \\
i<j \leqslant r}}^{r-1}\left(s_{i} s_{j}(\underset{\sim}{A} \underset{i}{C} \underset{\sim}{C} \underset{\sim}{A})^{-1} \underset{\sim}{a}, \underset{\sim_{j}}{a}-\underset{\sim}{a}\right)
\end{aligned}
$$

By substitution of (2.18) in (2.15), we obtain:
(2.19)

$$
\begin{aligned}
D_{r}\left(s_{1}, \ldots, s_{r} ; \underset{j}{t}\right)= & (2 \pi)^{-k / 2} \prod_{j=1}^{r}\left|{\underset{\sim}{j}}_{j}\right|^{-s_{j} / 2} \\
& \cdot \exp \left\{-\frac{1}{2}\left(Q_{1}-Q_{2}\right)\right\} \exp \left\{\left({\underset{\sim}{C}}_{\sim}^{-1} \underset{\sim}{t}\right)+\left(\frac{1}{2}{\underset{\sim}{C}}^{-1} \underset{\sim}{t}, \underset{\sim}{t}\right)\right\} \\
& \int_{\mathbb{R}^{k}} \exp \left\{-\frac{1}{2} Q_{3}\right\}|C|^{-1 / 2} d y_{1} \ldots d y_{k}
\end{aligned}
$$

The integral of (2.19) after the transformation

$$
\underset{\sim}{z}=\underset{\sim}{y}-{\underset{\sim}{C}}^{-1 / 2}(\underset{\sim}{b}+\underset{\sim}{t})
$$

becomes equal

$$
|C|^{-1 / 2}(2 \pi)^{k / 2}
$$

By using this result in (2.19), we obtain, in accord with (2.13) and (2.14) the result that we have established through theorem 3, that is,

$$
D_{r}\left(s_{1}, \ldots, s_{r} ; \underset{{\underset{j}{j}}^{t}}{)}=D_{r}\left(s_{1}, \ldots, s_{r}\right) \cdot M_{G}\left(\sum_{j=1}^{r} s_{j}{\underset{\sim}{j}}^{t}\right)\right.
$$

This result is a generalization in the sense of summarize the results established through theorems 1 and 2 as those obtained by Matusita (1966, 1967a) or Campos (1978).

REFERENCES

Ahmad, I.A. (1980). «Nonparametric estimation of an affinity measure between two absolutely continuous distributions with hypotheses testing applications». Annals of the Institute of Statistical Mathematics, 32, 223-240.
Ahmad, I.A. (1980). «Nonparametric estimation of Matusita's measure of affinity between absolutely continuous distributions». Annals of the Institute of Statistical Mathematics, 32, 241-246.
Campos, A.D. (1978). «Afinidade entre distribuições normais multivariadas». Atas do 3. ${ }^{\circ}$ Simpósio Nacional de Probabilidade e Estatística (ed. IME-USP), 75-79.

Cuadras, C.M. (1988). «Statistical distances». Estadística Española, 119, 295-378.
Cuadras, C.M. (1989). «Distance analysis in discrimination and classification using both continous and categorical variables». In Statistical Data Analysis and Inference, (Y. Dodge, ed.), Elsevier, Amsterdam, 459-473.
Cuadras, C.M. and Fortiana, J. (1993). «Applying distances in statistics». Qüestiió, 17, 39-74.
Khan, A.H. \& Ali, S.M. (1971). «A new coefficient of association». Annals of the Institute of Statistical Mathematics, 23, 41-50.
Krzanowski, W.J. (1983). «Distance between populations using mixed continuous and categorical variables». Biometrika, 70, 235-243.
Matusita, K. (1954). «On the estimation by the minimum distance method». Annals of the Institute of Statistical Mathematics, 5, 59-65.
Matusita, K. (1955). «Decision rules based on the distance for problems of fit, two samples and estimation». Annals of the Institute of Statistical Mathematics, 26, 631640.

Matusita, K. (1956). «Decision rule based on the distance for the classification problem». Annals of the Institute of Statistical Mathematics, 8, 67-77.

Matusita, K. (1961). «Interval estimation based on the notion of affinity». Bulletin of the International Statistical Institute, 38, 4, 241-244.

Matusita, K. (1964). «Distance and decision rules». Annals of the Institute of Statistical Mathematics, 16, 305-315.
Matusita, K. (1966). «A distance and related statistics in multivariate analysis». Multivariate Analysis - Proceedings of an International Symposium (ed. P.R. Krishnaiah). Academic Press New York, 187-200.
Matusita, K. (1967a). «On the notion of affinity of several distributions and some of its applications». Annals of the Institute of Statistical Mathematics, 19, 181-192.
Matusita, K. (1967b). «Classification based on distance in multivariate Gaussian cases». Proceedings of the Fifth Berkeley Simposium on Mathematical Statistics and Probability. University California Press, 1, 299-304.
Matusita, K. (1973). «Correlation and affinity in Gaussian cases». Multivariate Analysis - III - Proceedings of the Third International - Symposium (ed. P.R. Krishnaiah), Academic Press, New Yor, 345-349.
Matusita, K. (1973). «Discrimination and the affinity of distributions». In: Discriminant Analysis and Applications. (T. Cacoullos, ed.), Academic Press, N.Y., 213-223.

Matusita, K. (1977). «Cluster analysis and affinity of distributions. Recent Developments in Statistics». Proceedings of the 1976 European Meeting of Statisticians, 537-544.

Matusita, K. \& Motoo, M. (1955). «On the fundamental theorem for the decision rule based distance II.»Annals of the Institute of Statistical Mathematics, 7, 137-142.
Matusita, K. \& Akaike, H. (1956). «Decision rules based on the distance for the problems of independence, invariance and two samples». Annals of the Institute of Statistical Mathematics, 7, 67-80.

[^0]: * Dpto. de Matemática Aplicada à Biologia. Faculdade de Medicina de Riberirão Preto. Universidade de São Paulo. Brasil.
 -Received June 1998.
 - Acepted March 1999.

