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1. INTRODUCTION

A spatial point pattern is a collection of data {(xi,yi) i = 1, . . . ,n} consisting of n loca-
tions in an essentially planar region. Examples include the locations of cell nuclei in a
microscopic tissue section, trees in a forest, or cases of disease in a geographical region.
A fundamental assumption in the analysis of such data is that they can usefully be re-
garded as a partial realisation of a stochastic point process (Cox & Isham, 1980). Many
systems of individuals can also be described by attaching to the locations measurable
quantities like, say, diameter of a tree. This last case is an example of marked points
patterns.

There are many contexts in which the use of spatial point patterns can be very interes-
ting, for example, in the analysis of the human population’s spatial distribution, since
they can give us excellent information from both the demographic and the economic
points of view.

The interest in a pattern of points is found in that, with an appropriate choice of scale,
even huge objects may be best represented by a point. Given suitable scales, the actual
physical sizes of objects that may be represented that way are unbounded. On one ex-
treme, microscopes are required, on the other extreme it is telescopes that are needed.
The range of disciplines (pathology, geology, marine biology, zoology, physical and
human geography, astronomy, economy,...) dealing with similar phenomena reflects the
applicability of these techniques.

The concept of complete spatial randomness (CSR) is fundamental to the quantitative
description of a spatial pattern. A formal definition of CSR is that the events in the
region of observation A constitute a partial realisation of a homogeneous, planar Poisson
process (Diggle, 1983). This process incorporates a single parameter, λ, the intensity,
or mean number of events per unit area. The actual number of events in A, n say, is an
observation from a Poisson distribution with mean λ |A|, where |A| denotes the area of
the region A. If we consider n as fixed, we arrive at the following definition of CSR: (1)
each of the n events is equally likely to occur at any point within A; (2) the n events are
located independently of each other. Our interest in CSR is that it represents an idealized
standard which, if strictly unattainable in practice, may nevertheless be tenable as a
convenient first approximation. Most of the analysis begin with a test of CSR, and there
are several good reasons for this. Firstly, a pattern for which CSR is not rejected scarcely
deserves any further formal statistical analysis. Secondly, tests are used as a means of
exploring a set of data, rather than because rejection of CSR has an intrinsic interest.
Thirdly, CSR acts as a dividing hypothesis to distinguish between patterns which are
broadly classifiable as «regular» or «aggregated» (Figure 1).

A question of immediate interest is the following: Is it reasonable to expect a pattern
of real data events to display randomness? Naturally, the answer depends on what these
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events represent. If, for example, the point pattern is defined as locations of cities, in
order to evaluate the benchmark hypothesis of CSR, two contradictory forces are liable
to have an effect on the observed cities locations. On one hand, the competition between
neighbouring cities is likely to result in some thinning out of close neighbours, so that
the pattern becomes rather more regular in appearance. On the other hand, variations in
the local geography will result in some regions being more favourable for growth than
are other regions. This will result in an apparent patchiness (or clustering) in the cities
distribution. These two effects, and others, may well be sufficiently counterbalancing
each other, so that the distribution of cities may yet retain the appearance of randomness.
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Figure 1. Examples of point patterns in the unit square showing three different spatial structures:
Left, regular pattern; Middle, random pattern; Right, aggregated pattern.

In view of the remarkable diversity of mechanisms which may lead to an apparently
random pattern, it must be stressed that a random distribution implies that the pattern
has no discernible order and that its cause is undeterminable.

In literature, two major approaches have been suggested for the analysis of pattern. One
involves measures of physical distances between points (Diggle 1983; Ripley 1981,
1988; Cressie 1993, Stoyan et al. 1995), the other involves analysis of the variation in
the number of points in selected sub-areas of the region under study (Diggle, 1983; Up-
ton & Fingleton, 1994). In this paper we concentrate on the second approach. All the
counting methods rely on the use of quadrats. Several indices, like the index of disper-
sion and the index of cluster size, were proposed for scattered and contiguous quadrats.
Generally, their behaviour under CSR is quite well known, though little is analyzed un-
der departure of randomness. What is known is that the power of such indices depends
in an unpredictable way on the size and shape of the individuals quadrats (Diggle, 1979,
1983; Perry & Mead, 1979; Stiteler & Patil, 1971).

This topic owes its generality as it is a general way of proceeding in detection of point
pattern structures. Examples of this generality are the wide range of applications, the
majority refering to contiguous quadrats. We can find applications in environmental
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sciences such as pattern analysis of perennial shrubs (Gulmon & Mooney, 1977), of
herbs in the savanna (Hopkins, 1965) or detection of pattern in Lansing Woods trees
(Diggle, 1983); in economics such as analysis of the distribution of houses (Moellering
& Tobler, 1972), etc.

The goal of this paper is to analyze exhaustively the behaviour of quadrat-based indices
to detect spatial structures. Particularly, we present an extensive simulation study to
compare the performance of two of these indices under clear departures of CSR. In
addition we present our own developed software, S.P.P.A. (1997), which can be used in
this spatial context.

The plan of the paper is as follows. Section 2 presents the spatial indices. Section 3 is
devoted to the simulation study presenting the whole set of results. Finally, Section 4
develops the analysis of a real application.

2. SPATIAL INDICES

Throughout this section, given an observed pattern, we attempt to deduce the nature of
the process that gave rise to that pattern. Quadrat sampling involves collecting counts of
events in subsets of the study region. Traditionally, these subsets are rectangular (hence
the name of quadrats), although any shape is possible. Quadrats may be placed either
randomly or layed out contiguously in the region.

This is very easy to implement as it is only needed to position quadrats randomly in the
study region (Figure 2) and count the numbers of events that fall in each quadrat. It is
true that scattered quadrats counts provide some limited information about the nature
of a point pattern and that is our present concern. Counts from scattered quadrats are,
at best, a crude indicator of pattern because they take into account neither the relative
positions of the points within the quadrats nor the relative positions of the quadrats
themselves.
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Figure 2. Equi-sized scattered quadrats superimposed over the point patterns.
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The counts from equi-sized scattered quadrats (Figure 2) over a Poisson pattern will be
observations from a Poisson distribution with parameter equal to the product of the in-
tensity of the events per unit area and the area of the quadrats. A useful characteristic of
the Poisson distribution is that its parameter is equal both to the mean and the variance
of the distribution. If the pattern is more regular than a Poisson one, then the quadrat
counts will be more uniform in size and will therefore have a relatively small variance
(when compared with the size of the mean). On the other hand, if there are clusters, then
some quadrats will have large counts so that the variance of the counts will be relatively
large.

The analysis of grids of contiguous quadrats takes advantage of information on quadrat
locations. A grid of contiguous quadrats is a spatial lattice (Figure 3). The advantage
of such a grid is that neighbouring quadrats can be combined so that we may obtain
information about quadrats of more than one size.
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Figure 3. Spatial lattice of 15×15 contiguous quadrats superimposed over the point patterns.

A natural test of a Poisson distribution is therefore provided by examining the value
of the ratio sample variance/sample mean or index of dispersion (ID). If we denote
the observed counts in nq quadrats by x1,x2, . . . ,xnq, then these counts have mean x =

∑xi/nq and variance s2 = ∑(xi − x)2

(nq−1)
, where the summations are over the values of i

from 1 to nq. Hoel (1943) showed that

(1) ID =
(nq−1)s2

x

has an approximate χ2
nq−1 distribution under CSR. This approximation is reasonable

provided that nq > 6 and x > 1. Values of ID > χ2
nq−1;(1−α) are indicative of clus-

tering and regularity is given by values of ID < χ2
nq−1;α, where α stands for the usual

significance level.

Perry & Mead (1979) examined the behaviour of the index of dispersion test and con-
cluded both, that it is remarkably sensitive at detecting a lack of homogeneity within a
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point pattern, and that the behaviour of the test was principally dependent upon the size
of the mean of the quadrat counts: the larger the mean the more likely was the ID test
to recognize any heterogeneity presented in the pattern.

A number of other indices have been suggested, principally for situations in which
clusters may be present. All are sensitive to changes in quadrat sizes. David and Moore
(1954) suggested that the quantity

(2) ICS =
(

s2

x

)
−1

would provide an approximate index of clumping or contagiousness. This test is called
index of cluster size. For a Poisson pattern, ICS has mean 0 and is independent of the
quadrat size. An interpretation of a positive value for ICS is as the number of other
events intimately associated with a randomly chosen event. A negative value for ICS
indicates some regularity in the positioning of the events.

Theoretically, if we have the observed iid counts x1,x2, . . . ,xnq in nq quadrats following
any distribution, then ICS satisfies (Serfling, 1980)

(3) ICS ∼ N(
σ2

µ
−1,

1
n
(

σ6

µ4 +
µ4 −σ4

µ2 − 2µ3σ2

µ3 ))

where E(xi) = µ, Var(xi) = σ2, E({xi −µ}3) = µ3 and E({xi −µ}4) = µ4.

Particularly, if the counts come from a Poisson distribution, i.e., if we have a CSR point
pattern, then for large nq we have that

(4) ICS ∼ N(0,2/n)

However, for small nq a better approximation can be found for ICS which consists of

(5) ICS ∼ χ2
nq−1

nq−1
−1

Note that for large values of nq, we can approximate χ2
nq−1 ∼ N(nq−1,2(nq−1)).

A number of other indices have been suggested, principally for situations where it is
thought that clusters may be present. All are sensitive to changes in quadrat sizes. Ho-
wever, for quadrat count data, ID appears to have no serious rivals as a test statistic
(Diggle, 1983). Cormack (1979) notes that alternative indices proposed by Morisita
(1959) and Lloyd (1967) need to be converted to ID in order to test CSR.

It was first Greig-Smith (1952) who proposed contiguous quadrats to analyze data pre-
sented as counts by means of the index of dispersion. He suggested that a 16×16 grid of
quadrats should be used. Then, Diggle (1983) used the same index of dispersion within
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a regular k× k grid of contiguous square sub-regions of equal area to test CSR. Parti-
cularly, significantly small values of ID indicate a tendency towards a regular spatial
distribution of events, whereas significantly large values indicate aggregation.

3. SIMULATION STUDY

We present here an extensive simulation study of the two selected count-based indices,
ID and ICS based on contiguous quadrats superimposed over the selected region. To
consider any possible alternatives to the random (CSR) pattern, we also consider regular
and aggregated point patterns. CSR patterns are generated according to a homogeneous
Poisson process following the definition given in the introduction.

Regular or inhibitory point patterns are defined through a hard-core distance, δ, using
a sequential inhibition process based on the following facts: a) x1 is uniformly distri-
buted in the region A; b) Given

{
x j, j = 1, . . . , i−1

}
, x j is uniformly distributed on the

intersection of A with
{

y : d(y,x j) ≥ δ, j = 1, . . . , i−1
}

.

Aggregated patterns are defined in terms of Poisson clustered processes as defined by
Neyman & Scott (1958). These processes incorporate an explicit form of spatial clus-
tering, and as such provide a more satisfactory basis for the modelling of aggregated
spatial point patterns. They are defined based on the following three postulates: a) Pa-
rent events form a Poisson process with a fixed intensity; b) Each parent produces a
random number of offsprings, realized independently and identically for each parent; c)
The positions of the offsprings relative to their parents are independently and identically
distributed according to a bivariate normal density function.

The S.P.P.A. computer software has been developed to generate planar coordinates of
points in a fixed region with a particular spatial structure and then, among other things,
calculate quadrat-based counts for a given quadrat size.

3.1. Design of the simulation study

The process of simulations has been carried out for three qualitatively different spatial
structures: randomness, clustering and regularity. We have used several total number
of points per pattern: for random and regular structures, n = 400,1000 and for cluste-
red structures, n = 400,1000,2500. Clustered pattern simulation is done with several
number of fathers, ranging from 1 to 4. Two hard-core radius for inhibitory patterns
have been used, ir = 0,04295 (with n = 400), and ir = 0,02688 (with n = 1000). For
each combination of selected quantities, we simulated r = 2000 realizations in the unit
square, (0,1)× (0,1).
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For each pattern, and to apply the contiguous quadrat system, we have used several
grid sizes shown in Table 1. Each line of Table 1 gives us information about the type of
simulated pattern (Pattern), the number of points in each pattern (Points), the number of
replications for each experiment (Repl.), the inhibition value used in the regular pattern
simulations (Inhib.), and grid order values. All grid orders are magnitudes to the square,
i.e., (10×10,15×15,20×20, etc), but they are shown simplified (10,15,20, etc).

Table 1. Design of the simulation study.

Pattern Points Repl. Inhib. Grid order

Random 400 2000 2,3,. . . ,6,8,10,11,13,. . . ,19,20,21,23,25,30,. . . ,100

Random 1000 2000 2,3,. . . ,6,8,10,11,13,. . . ,19,20,21,23,25,30,40,. . . ,100

Regular 400 2000 .04295 5,6,8,10,11,13,. . . ,19,20,21,23,25

Regular 1000 2000 .02688 5,6,8,10,11,13,. . . ,19,20,21,23,25,30,35,40

1 Cluster 400 2000 4,5,6,8,10,11,13,. . . ,19,20,21,23,25,30,35,40

1 Cluster 1000 2000 6,8,10,11,13,. . . ,19,. . . ,30,35,40,50,. . . ,100,120,. . . ,200

1 Cluster 2500 2000 10,20,30,. . . ,100,120,140,. . . ,200

2 Cluster 1000 2000 10,20,30,. . . ,100,120,140,. . . ,200

2 Cluster 2500 2000 10,20,30,. . . ,100,120,140,. . . ,200

3 Cluster 1000 2000 10,20,30,. . . ,100,120,140,. . . ,200

3 Cluster 2500 2000 10,20,30,. . . ,100,120,140,. . . ,200

4 Cluster 1000 2000 10,20,30,. . . ,100,120,140,. . . ,200

4 Cluster 2500 2000 10,20,30,. . . ,100,120,140,. . . ,200

Each combination of pattern, replicate, grid size, inhibition radius and number of clus-
ters yielded 2000 estimates of both indices which are summarised by box-plots and
tables.

Particularly interesting is to show the goodness of fit of the approximation given in (5)
for CSR patterns with a small number of nq quadrats. As we are interested in analyzing
values belonging to the tails of the chi-square distribution to safely contrast overdisper-
sion or underdispersion, we focus upon the following percentiles, α = 1%,5%,10%
and α = 99%,95%,90%. For each percentile the relative error is calculated as

(6) re =
100 |α− p|

α
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where p is the observed proportion of simulated values of ICS under the theoretical
value obtained through (5) for α = 0,01,0,05 and 0,10 and over the theoretical value
from (5) for α = 0,99,0,95 and 0,90.

3.2. Analysis of ID index

Table 2 shows the summarized results of the simulations with the ID index. Each entry
represents the mean value of 2000 simulations. The following results are observed.

Table 2.Means of ID index. Each column entry indicates grid size and pattern structure
(Ran=random, Reg=regular, c=cluster) followed by the number of points in the unit
square. Blank boxes indicate that the corresponding simulation has not been analyzed.

Grid Ran400 Ran1000 Reg400 Reg1000 1c400 1c1000 1c2500 2c1000 2c2500 3c1000 3c2500 4c1000 4c2500

2 3 3

3 8 8

4 15 15 257

5 24 24 4 3 274

6 35 35 6 5 290 677

8 62 63 12 10 323 716

10 99 99 21 16 363 759 1752 1390 3349 1534 3699 1031

11 119 120 27 21 384 782

13 167 168 44 32 433 832

15 223 224 65 46 490 890

17 287 288 86 62 553 955

19 359 359 109 85 626 1028

20 398 399 121 100 665 1067 2068 1768 3833 1981 4369 1457 3065

21 438 440 136 116 707 1107

23 528 527 178 150 796 1197

25 622 624 246 183 891 1293

30 898 899 270 1167 1569 2576 2281 4369 2508 4935 1988 3628

35 1224 1224 394 1490 1894

40 1598 1597 648 1867 2271 3275 2987 5078 3220 5658 2689 4349

45 2023

50 2497 2499 3173 4180 3890 5985 4122 6567 3594 5258

55 3022

60 3597 3602 4273 5273 4990 7087 5234 7685 4697 6366

65 4221

70 4898 4902 5572 6579 6297 8391 6530 8985 5999 7664

75 5626

80 6397 6398 7067 8077 7791 9889 8034 10481 7497 9174

85 7224

90 8097 8102 8771 9779 9496 11593 9728 12186 9202 10875

95 9022

100 9996 10005 10675 11682 11392 13497 11629 14096 11107 12769

120 15071 16077 15797 17895 16035 18491 15509 17177

140 20278 21281 20998 23095 21234 23704 20711 22377

160 26269 27287 26989 29095 27235 29685 26708 28375

180 33072 34079 33806 35891 34033 36502 33503 35173

200 40663 41696 41392 43501 41630 44067 41121 42772

35



3.2.1. CSR point pattern distribution

In patterns with 400 points, ID follows a perfect χ2
nq−1 distribution (pval= 0.98)

for grid sizes of 2× 2 up to 35× 35. For bigger grid sizes, ID still follows a
chi-square distribution (pval= 0.39) but with a slightly smaller mean (Figure 4).
Then, theory is generally satisfied except for very large grid sizes.

(Random: patterns with 400 points)
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Figure 4. Boxplots of ID values under CSR pattern structure with 400 points.

Again, in patterns with 1000 points, ID follows a perfect χ2
nq−1 distribution (pval=

0.97) for grid sizes from 2× 2 up to 70× 70. This distribution is still observed
for bigger grid sizes (pval= 0.57) but with some little changes in the mean value
(Figure 5). Generally, there seems to be no clear distinction in the ID performance
between CSR patterns with different number of points.

(Random: patterns with 1000 points)
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Figure 5. Boxplots of ID values under CSR pattern structure with 1000 points.
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3.2.2. Regular point pattern distribution

For patterns with 400 points, we observe in any case that ID < χ2
nq−1;α = 0,01

(Figure 6). The magnitude of the ID index is increased with the grid size, though
they are significantly smaller (pval= 0.01) compared to the corresponding ID
value under CSR structure. The chi-square distribution is no longer satisfied.

(Regularity: patterns with 400 points)
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Figure 6. Boxplots of ID values under regular pattern structure with 400 points and inhibition
radius ir = 0,04295

(Regularity: patterns with 1000 points)
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Figure 7. Boxplots of ID values under regular pattern structure with 1000 points and inhibition
radius ir = 0,02688.

For patterns with 1000 points, again it is generally observed that ID < χ2
nq−1;α =

0,01 (Figure 7). ID values increase with the grid size though still significantly
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smaller (pval= 0.01) than the corresponding values under CSR condition. It is
also observed that for equal grid size, ID values with 1000 points are smaller
than ID values for patterns with 400 points. This is clearly due to the fact that we
are using different values for the inhibition radius and this is detected by the ID
index.

3.2.3. Cluster point pattern distribution

In this section we comment the results for the four different cluster pattern structures,
though, for shortness, we only show the corresponding boxplots for 1 cluster patterns
(see Figures 8, 9 and 10).

(1 cluster: patterns with 400 points)

ID40

ID35

ID30

ID25

ID23

ID21

ID20

ID19

ID17

ID15

ID13

ID11

ID10

ID8

ID6

ID5

ID4

2250

2000

1750

1500

1250

1000

750

500

250

0

Figure 8. Boxplots of ID values under 1 cluster pattern structure with 400 points.

(1 Cluster: patterns with 1000 points)
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Figure 9. Boxplots of ID values under 1 cluster pattern structure with 1000 points.
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(1 Cluster: patterns with 2500 points)
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Figure 10. Boxplots of ID values under 1 cluster pattern structure with 2500 points.

In any case, we observe that ID > χ2
nq−1;(1−α = 0,99) and its value increases

with the grid size. ID index is a very sensitive index to detect clustering in that
not only the ratio standard deviation/mean decreases as the grid size increases,
but also ID increases with the number of clusters, except for the four cluster case.
In fact, the pattern with four clusters may appear to be less aggregated that those
patterns with a smaller number of clusters. Then, ID index is good in detecting
scales of aggregation in point patterns.

Within the same scale of aggregation, ID values show less variability in those
patterns with a larger number of points.

The statistical distribution of ID under clustering depends on the grid size and
the number of points. The chi-squared distribution is always rejected though ID
values seem to follow a gaussian distribution in several grid sizes. This behaviour
is independent of the scale of aggregation.

Note that grid size depends on the number of points in the pattern. Using a large
grid size so that most of our cells or quadrats have zero counts causes the results
to be biased. This comment is also clearly true for any other kind of pattern
structure.

3.3. Analysis of ICS index

Table 3 presents the summarized results of the corresponding simulations with the ICS
index. Each entry in the table represents the mean value of 2000 simulations. The follo-
wing results are obtained.
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Table 3.Means of ICS index. Each column entry indicates grid size and pattern structure
(Ran=random, Reg=regular, c=cluster) followed by the number of points in the unit
square. Blank boxes indicate that the corresponding simulation has not been analyzed.

Grid Ran400 Ran1000 Reg400 Reg1000 1c400 1c1000 1c2500 2c1000 2c2500 3c1000 3c2500 4c1000 4c2500

2 -0,01509 0,0250

3 -0,02333 -0,0062

4 0,00239 -0,0003 16,11

5 -0,00448 0,0005 -0,843 -0,867 10,44

6 -0,00608 -0,0073 -0,832 -0,862 7,30 18,34

8 -0,01696 0,0012 -0,807 -0,848 4,13 10,37

10 0,00039 0,0030 -0,788 -0,835 2,66 6,67 16,697 13,0392 32,8244 14,493 36,361 9,4166

11 -0,00718 0,0005 -0,778 -0,827 2,20 5,52

13 -0,00426 0,0021 -0,739 -0,812 1,58 3,95

15 -0,00281 0,0002 -0,709 -0,796 1,19 2,97

17 -0,00192 -0,0011 -0,700 -0,784 0,92 2,32

19 -0,00201 -0,0026 -0,698 -0,763 0,74 1,86

20 -0,00217 0,0004 -0,696 -0,749 0,67 1,67 4,1821 3,4315 8,60691 3,9654 9,9505 2,6509 6,68246

21 -0,00439 -0,0002 -0,690 -0,736 0,61 1,52

23 -0,00092 -0,0011 -0,664 -0,717 0,51 1,27

25 -0,00273 0,0001 -0,605 -0,707 0,43 1,07

30 -0,00069 -0,0002 -0,700 0,30 0,75 1,8657 1,5372 3,85966 1,7893 4,4896 1,2118 3,03538

35 -0,00038 -0,0001 -0,678 0,22 0,55

40 -0,00078 -0,0010 -0,595 0,17 0,42 1,0482 0,8679 2,17584 1,0139 2,5382 0,6819 1,71952

45 -0,00033

50 -0,0009 0,0001 0,270 0,6725 0,5567 1,39478 0,6494 1,6277 0,4381 1,10421

55 -0,00052

60 -0,00045 0,0009 0,187 0,4652 0,3865 0,96915 0,4542 1,1353 0,3051 0,76895

65 -0,0006

70 -0,00011 0,0005 0,137 0,343 0,2854 0,71275 0,3329 0,834 0,2245 0,56445

75 0,00028

80 -0,00028 -0,0001 0,105 0,2623 0,2176 0,54534 0,2556 0,6379 0,1717 0,43366

85 -8,9E-06

90 -0,00026 0,0003 0,083 0,2074 0,1725 0,43137 0,2012 0,5047 0,1362 0,34277

95 -0,00018

100 -0,00032 0,0006 0,068 0,1683 0,1394 0,34981 0,163 0,4097 0,1108 0,27705

120 0,0467 0,1165 0,09711 0,2428 0,1136 0,2842 0,0771 0,19292

140 0,0346 0,0858 0,07139 0,17839 0,0834 0,2095 0,0567 0,14175

160 0,0262 0,0659 0,0543 0,13656 0,0639 0,1596 0,0433 0,10846

180 0,0208 0,0519 0,04342 0,10779 0,0504 0,1267 0,0341 0,08562

200 0,0166 0,0424 0,03483 0,08755 0,0408 0,1017 0,0281 0,06933

3.3.1. CSR point pattern distribution

For CSR patterns with 400 points, ICS values oscillate around zero. However,
for small to medium grid sizes, there exist quite large standard deviations and
also some outliers are present (Figure 11). Standard deviations rapidly decrease
when grid size increases, which is natural in terms of the theoretical expression
of the variance in formula (4) for large samples. The results show that for small
samples, the chi-square distribution given by (5) is satisfied and also ICS values
follow the gaussian distribution (4) when large samples are considered.
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(Random: patterns with 400 points)
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Figure 11. Boxplots of ICS values under CSR pattern structure with 400 points.

Generally, the same results can be found for CSR patterns with 1000 points. The
difference is that the larger the number of points, we need smaller grid sizes to
get the same or smaller standard deviations (Figure 12).

(Random: patterns with 1000 points)
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Figure 12. Boxplots of ICS values under CSR pattern structure with 1000 points.

Concerning the evaluation of the goodness of fit of the approximation given in
(5) for CSR patterns with a small number of nq quadrats in terms of the re-
lative error, we calculated the relative errors following (6) for six percentiles,
α = 0,01,0,05,0,10,0,90,0,95,0,99, and for several grid sizes up to nq = 100
(10× 10). The results are shown in Table 4. In general, and independently of
the number of points per pattern, the relative errors are below 20%, which can
be considered as small enough to trust on the results. However, we find relative
errors bigger that 20% at the very end of the tails, i.e., for α = 0,01 and 0,99,
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which means that under very severe conditions the results of a CSR contrast might
be misleading.

Table 4.Relative errors of the ICS index under CSR pattern structure for several percentiles and
for patterns with n = 400 points and with n = 1000 points (in parenthesis) in the unit
square.

grid size

2×2 3×3 4×4 5×5 6×6 8×8 10×10

α 0.99 5 (30) 40 (10) 20 (20) 25 (5) 25 (10) 15 (15) 20 (0)

0.95 5 (3) 12 (3) 8 (1) 4 (6) 4 (19) 14 (0) 7 (12)

0.90 1.5 (3) 8.5 (3) 3 (3) 5.5 (0) 10 (16) 19 (1.5) 5 (4.5)

0.10 1.5 (15) 16 (1.5) 4.5 (3.5) 5.5 (9) 9.5 (2) 16.5 (4.5) 5.5 (15)

0.05 6 (30) 22 (1) 12 (1) 1 (9) 16 (10) 1 (4) 15 (10)

0.01 40 (95) 5 (40) 30 (15) 25 (0) 0 (45) 10 (55) 25 (15)

(Regularity: patterns with 400 points)
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Figure 13. Boxplots of ICS values under regular pattern structure with 400 points and inhibition
radius ir = 0,04295.

3.3.2. Regular point pattern distribution

We find that ICS values for regular patterns are significantly smaller than those
under CSR (pval= 0.01), showing always clearly negative values. However, there
seems to be an increasing tendency towards zero as the grid size increases (Figu-
res 13 and 14). This shows that there should be an optimum grid size, for example
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around 20×20 in patterns with 400 points or 30×30 when the number of points is
1000. If we surpass them, then ICS values are biased. The chi-squared distribution
is no longer satisfied in favour of the Gaussian distribution which is only observed
for those grid sizes near the optimum (Figures 13 and 14).

(Regularity: patterns with 1000 points)
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Figure 14. Boxplots of ICS values under regular pattern structure with 1000 points and inhibition
radius ir = 0,02688.

3.3.3. Cluster point pattern distribution

Again we comment the results for all cluster structures though, for shortness, we only
show those boxplots corresponding to one cluster with 400, 1000 and 2500 points (Fi-
gures 15, 16 and 17).

(1 cluster: patterns wit 400 points)
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Figure 15. Boxplots of ICS values under 1 cluster pattern structure with 400 points.
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(1 cluster: patterns with 1000 points)
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Figure 16. Boxplots of ICS values under 1 cluster pattern structure with 1000 points.

(1 Cluster: patterns with 2500 points)
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Figure 17. Boxplots of ICS values under 1 cluster pattern structure with 2500 points.

Generally speaking, under cluster spatial structures, ICS takes positive values, signifi-
cantly different from zero (pval= 0.01, which is characteristic of ICS under CSR pat-
terns). However, ICS tends to decrease to zero as the grid size increases. The relative
standard deviation of this indicator (standard deviation/mean) is increased when the
grid size increases.

We have also found that ICS index is very sensitive to both, the scale of aggregation
(given by the number of clusters) and the number of points. In fact, the mean values
of the ICS index for patterns with 1000 points can be obtained by multiplying those
obtained with 400 points times 2.5. This is equally true if we compare patterns with
400 points with those patterns with 2500 points. In this case we have to multiply times
6.25 the corresponding values of ICS.
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The distribution of ICS under clustering is somewhat complicated and depends
on the number of points and the degree of aggregation. For example, when we
consider patterns with one cluster, gaussianity is satisfied only within a few grid
sizes (from 4× 4 to 13× 13) for patterns with 400 points. The number of grid
sizes in which the gaussian assumption is satisfied, increases when the number of
points increases (from 6×6 to 60×60, for n=1000, and in most of grid sizes for
n=2500).

For those patterns with 2 clusters, values of ICS are more indicative of spatial
clustering compared to patterns with only one cluster. The gaussian behaviour of
ICS is similar as commented above.

In general, ICS values clearly indicate the degree of clustering by taking larger
values. The gaussian distribution is comfortable reached when the number of
points is large.

3.4. General conclusions

After analyzing step by step the results obtained in the simulation study, the following
general results can be outlined.

The results confirm that the index of dispersion follows an approximate χ2
nq−1

distribution under CSR when nq > 6 and x > 1. Moreover, we can enlarged this
condition to nq < 6 (grid 2×2) and x < 1. Equally, our results show that values of
ID > χ2

nq−1;(1−α) are indicative of clustering and regularity is given by values

of ID < χ2
nq−1;α (see Figures 18 and 19). Therefore, we confirm by simulation

Hoel’s (Hoel, 1943) and Diggle’s results (Diggle, 1983).
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Figure 18. Comparison of boxplots for the ID index under the three pattern structures (1 cluster,
CSR and regularity) for patterns with n=400 points in the unit square.
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Figure 19. Comparison of boxplots for the ID index under the three pattern structures (1 cluster,
CSR and regularity) for patterns with n=1000 points in the unit square.

Similarly, we have also confirmed Douglas theory adapted for contiguous qua-
drats (Douglas, 1975) for the index of cluster size: for a Poisson pattern, ICS
has mean 0 and is independent of the quadrat size; ICS has a positive mean for
clustered patterns and a negative mean for regular patterns (see Figures 20 and
21).

We have checked the distribution of both indices under alternative spatial pat-
terns. ID index is no longer chi-squared distributed if CSR is rejected in favour
to regular or aggregated patterns. However, under these alternatives, it seems that
ID follows a gaussian distribution, particularly when the number of points is large
enough (at least 1000 points). On the other hand, ICS index follows a chi-squared
distribution under small grid sizes and a gaussian distribution for bigger grid sizes
as theory states.
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Figure 20. Comparison of boxplots for the ICS index under the three pattern structures (1 cluster,
CSR and regularity) for patterns with n=400 points in the unit square.
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Figure 21. Comparison of boxplots for the ICS index under the three pattern structures (1 cluster,
CSR and regularity) for patterns with n=1000 points in the unit square.

Both indices are very sensitive at detecting not only the degree of clustering but
also the number of points. The latter element is crucial to get lower standard
deviation in the index values.

To detect randomness, the larger the grid size, the better indication of CSR pat-
tern (in terms of bias and standard deviation) we get from both indices. This is
not generally true when detecting regularity or aggregation. There seems to be
an optimum grid size, from which onwards the results are clearly biased, even
confusing. The optimum grid size depends on the number of points. Generally
speaking, and according to our simulations, the number of contiguous quadrats
should not exceed the total number of points. A low grid order means that we
may have insufficient information. But also a too large grid order means that we
are introducing irrelevant information to our data structure, introducing bias to
the estimates. This was not previously found in literature.

4. APPLICATION

It is known that information about the spatial distribution of the population may give
us insights of interesting economic phenomena (Richardson, 1986; Hudson & Fow-
ler, 1966; Lösch, 1954). This is due to the fact that human settlements have a history
conditioned by economy which has been developed in specific geographical areas. Con-
sequently, we present here a practical use of both, the ID and ICS indices, to describe
qualitative and quantitatively the spatial structure of two important spanish peninsular
provinces, Madrid and Barcelona as this analysis will provide economists and geograp-
hers with relevant information.
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4.1. Data and results

The data set represents coordinates, longitude (eastings) and latitude (northings) of
points, where each point defines the location of a 20,000 inhabitants crowd. The data
set was transformed adequately to have planar coordinates. The origin of the coordi-
nate axis is set up as the point of the meridian at 9o-west longitude and the parallel at
36o-north latitude. Let each measurement unit be equal to 1500 metres (approximately).
Then, we assign pi points to i− th city as follows

(7) pi =
hi

20000
,

where hi denotes the number of inhabitants in each city, obtained from INE (1994), and
the coordinates from Dirección General I.G.N. (1994). The spatial locations of Madrid
and Barcelona are shown in Figure 22.
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Figure 22. Upper row: Spatial locations of Madrid and empirical (dotted line) and confiden-
ce intervals (solid lines) of the K-function under a Neyman-Scott process with two
clusters. Lower row: Spatial locations of Barcelona and empirical (dotted line) and
confidence intervals (solid lines) of the K-function under a Neyman-Scott process
with two clusters.
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In Tables 4 and 5 the results are shown for the two selected provinces and compared to
the total spanish peninsular territory. The column entries give us the number of points
included in each territorial pattern, and the ID and ICS values for the following grid
orders 10×10, 20×20 and 30×30.

Table 4. ID and ICS values for two spanish provinces

Points ID10 ID20 ID30 ICS10 ICS20 ICS30

Spain 1183 8393 27491 59763 83,78 67,90 65,48

Barcelona 185 1961 3020 3367 18,81 6,57 2,74

Madrid 235 2587 3843 4974 25,14 8,63 4,53

Table 5. Quantitative comparison of ID and ICS values for two spanish provinces

Points ICS10 ICS20

Barcelona 185 18,81 6,57

Madrid 235
1,2702703 = 185 19,79 6,79

The indices values indicate that we have demographic structures characterized by clus-
ter spatial processes (pval= 0.01 for both indices and grid order when testing CSR).
But if we want to use more quantitatively the indices information, let us limit ourselves
to compare the provinces of Barcelona and Madrid, as they are set on surfaces of (ap-
proximately) the same magnitude. Keeping in mind the total number of points in each
pattern structure (185 and 235), we concentrate on grid orders of 10×10 and 20×20,
as 30× 30 will add irrelevant information as commented previously on the paper. Al-
so, though both indices are sensitive at detecting the spatial structure depending on the
number of points and degree of clustering, if there exists, the ICS values present the
interesting characteristic of picking up the proportion among the number of points of
different patterns within the same cluster degree. Due to this characteristic we have
considered more appropriate to use the ICS index in order to make the comparisons in
quantitative terms.

In order to remove from Madrid ICS index the component due to the increment in the
number of points with regard to Barcelona, the values of the ICS index are divided by
1,27 (note that 235/185=1,2702703). As a result (see Table 5) we can conclude that the
demographic spatial structure of Madrid province presents bigger intensity and bigger
cluster degree than that of Barcelona.

Knowing that both, Madrid and Barcelona spatial patterns are clustered spatial structu-
res, we tried to fit Neyman-Scott processes (as defined in section 3) to both patterns. As
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a result, Madrid corresponds to a clustered pattern with two parents (pval= 0.89), one
with 155 offsprings and a dispersion from the parent of 0.06 and other parent with 80
offsprings dispersed 0.10 from the parent. On the other hand, Barcelona corresponds
to a clustered pattern with again two parents (pval= 0.83), one with 90 offsprings and
a dispersion parameter of 0.06 and other parent with 100 offsprings and a dispersion
parameter of 0.068.

The goodness of fit of both processes (see Figure 22) has been measured by means of
the K-function, a second-order property defined as (Diggle, 1983)

(8) K(t) = λ−1E(NFE(t)))

where λ stands for the first-order intensity function and NFE(t) represents the number
of further events within distance t of an arbitrary event (Diggle, 1983).

Then we have showed an application of the use of spatial indices in detecting a pattern
structure and also in making quantitative comparisons between point patterns.
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