SOLUCIÓ AL PROBLEMA PROPOSAT AL VOLUM 25 N. 2

PROBLEMA N. 89

It is well known that $(n-1) S \sim W_{p}(V, n-1)$. See, e.g., Anderson (1958, sections 3.3 and 7.2). This means that this seemingly non-central Wishart variate is, in fact, a central Wishart variate. A quick way to see this is the following. Write $(n-1) S=$ $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\prime}=X^{\prime} M X$, with $X:=\left(x_{1}, \ldots, x_{n}\right), M:=I_{n}-n^{-1} 1_{n} 1_{n}^{\prime}, 1_{n}$ being an $(n \times 1)$ vector with n unit elements.

As M is symmetric idempotent, its Schur decomposition is $M=T T^{\prime}$, with $T^{\prime} T=$ I_{n-1} and $T^{\prime} 1_{n}=0$. This yields then $(n-1) S=Y^{\prime} Y$, with $Y^{\prime}:=X^{\prime} T$. Write $Y^{\prime}=$ $\left(y_{1}, \ldots, y_{n-1}\right)$. Clearly $\mathcal{D}\left(\operatorname{vec} Y^{\prime}\right)=\mathcal{D}\left(\operatorname{vec} X^{\prime} T\right)=\mathcal{D}\left[\left(T^{\prime} \otimes I_{p}\left(\operatorname{vec} X^{\prime}\right)\right]=\left(T^{\prime} \otimes I_{p}\right)\right.$ $\mathcal{D}\left(\operatorname{vec} X^{\prime}\right)\left(T \otimes I_{p}\right)=\left(T^{\prime} \otimes I_{p}\right)\left(I_{n} \otimes V\right)\left(T \otimes I_{p}\right)=T^{\prime} T \otimes V=I_{n-1} \otimes V$. The $n-1$ vectors y_{1}, \ldots, y_{n-1} are seen to be uncorrelated. Because of normality they are independent. Further $E Y^{\prime}=\left(E X^{\prime}\right) T=\mu 1_{n}^{\prime} T=0$. Given the definition of the central Wishart we conclude that $(n-1) S \sim W_{p}(V, n-1)$.

It is also well known that $E[(n-1) S]^{-1}=(n-p-2)^{-1} V^{-1}$ so that $E S^{-1}=(n-$ 1) $(n-p-2)^{-1} V^{-1}$.

See, e.g. Legault-Giguère (1974, Lemma B6) or Neudecker (2001).
In a recent article Fang, Kollo \& Parring (2000) give an approximation

$$
E \operatorname{vec} S^{-1}=\operatorname{vec} V^{-1}+(2 n)^{-1}\left(\operatorname{vec} \Pi \otimes I_{p^{2}}\right)^{\prime} \operatorname{vec} B^{\prime}+0\left(n^{-1}\right)
$$

with

$$
\Pi:=\left(I_{p^{2}}+K_{p p}\right)(V \otimes V)
$$

and

$$
B:=\left(I_{p} \otimes K_{p p} \otimes I_{p}\right)\left[I_{p^{2}} \otimes \operatorname{vec} V^{-1}+\left(\operatorname{vec} V^{-1}\right) \otimes I_{p^{2}}\right]\left(V^{-1} \otimes V^{-1}\right)
$$

(We added a tranposition sign to B in the result. It was apparently lost in the process.)
A little bit of straightforward algebra shows that

$$
\left(\operatorname{vec} \Pi \otimes I_{p^{2}}\right)^{\prime} \operatorname{vec} B^{\prime}=2(p \Pi) \operatorname{vec} V^{-1}
$$

Hence the approximation boils down to

$$
E S^{-1}=n^{-1}(n+p+1) V^{-1}+0(n-1)
$$

References

Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis, Wiley, New York.

Fang, K.-T., Kollo, T. \& Parring, A.-M. (2000). «Approximation of the non-null distribution of generalized T^{2}-statistics», Linear Algebra Appl., 321, 27-46.
Legault-Giguère, M.A. (1974). Multivariate normal estimation with missing data, M. Sc. Thesis, Mc Gill University, Montréal, Québec, Canada.
Neudecker, H. (2001). «Some applications of the matrix Haffian in connection with differentiable matrix functions of a central Wishart variate», Qüestiió, 25.2, 187-210.

Heinz Neudecker

