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Exponentiated power Maxwell distribution with 
quantile regression and applications 

Francisco A. Segovia1, Yolanda M. G´ 2 and Diego I. Gallardo3omez 

Abstract 

In this paper we introduce an extension of the power Maxwell distribution. We also dis-
cuss a reparametrized version of this model applied to quantile regression. Some prop-
erties of the model and estimation based on the maximum likelihood estimation method 
are studied. We also present a simulation study to assess the performance of estima-
tors in such fnite samples, and two applications to real data sets to illustrate the model. 

MSC: 62E10, 62J02. 

Keywords: Maxwell distribution, exponentiated distributions, maximum likelihood, quantile regres-
sion. 

1. Introduction 

Lehmann (1953) and Durrans (1992) introduced a family of distributions named expo-
nentiated distributions. Their cumulative distribution function (CDF) is defned as 

ϕF (w;γ) = F(w)γ , w ∈ R,γ > 0 (1) 

where F(w) is the CDF for a certain random variable. It follows directly that the proba-
bility density function (PDF) is 

ϕ f (w;γ) = γ f (w)F(w)γ−1 , (2) 

where f (w) is the PDF related to F(w). Durrans (1992) considered this methodology 
by using the normal distribution, i.e., F = Φ and f = φ , the normal CDF and PDF of 
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the standard normal distribution, respectively. This model was also discussed in more 
detail in Gupta and Gupta (2007), Pewsey, G´ ego, Cin-omez and Bolfarine (2012) and Rˆ 
tra and Cordeiro (2012). Gupta and Kundu (1999) used this methodology to introduce 
the generalized exponential distribution, setting F(w) as the CDF of the exponential 
model. Gómez and Bolfarine (2015) consider the case where F(w) is the CDF of a 
half-normal distribution, resulting in a distribution which belongs to the family of beta 
generalized half-normal distributions. Other extensions using this methodology include 
the exponentiated Weibull (Mudholkar and Srivastava, 1993; Mudholkar, Srivastava and 
Freimer, 1995), the exponentiated Pareto (Gupta, Gupta and Gupta, 1998), exponenti-
ated Gumbel (Nadarajah, 2005), exponentiated log-normal (Kakde and Shirle, 2006), 
exponentiated gamma (Nadarajah and Gupta, 2007) and power piecewise exponential 
(Gómez, Gallardo and Arnold, 2017). The Maxwell (M) distribution was proposed by 
Maxwell (1860) in order to model velocities among gas molecules. Maxwell’s research 
was generalized by Boltzmann (1871a,c,b), to develop the distribution of energies among 
molecules. This distribution has diverse applications in the areas of physics, chem-
istry, and physical chemistry, (see Dunbar (1982)). Singh et al. (2018) introduced the 
power Maxwell (PM) distribution, based on taking the power of a random variable that 
has Maxwell distribution. Segovia et al. (2020) introduced the slashed power Maxwell 
(SPM) distribution and use it for outlier data modelling. However they do not use those 
extensions of the PM distribution considering a regression structure. We consider the 
specifc parametrization considered in Huang and Chen (2015), where the CDF and PDF 
of the variable are given by 

FW (w;ψ,β ) = G 
2βw 3 

2ψ2 , 2 
, w ≥ 0 (3) 

4β 3β −1fW (w;ψ,β ) = √ w exp 
(2ψ2)3/2 π 

1 2β− w
2ψ2 , 

respectively, where ψ,β > 0, and G(·,a) denotes the CDF for the gamma distribution 
with shape and scale parameters equal to a and 1, respectively. On the other hand, 
Galarza et al. (2017) used the skewed distributions family (SKD) in order to intro-
duce quantile regression, where one parameter represents the quantile of the distribution. 
Gómez et al. (2019) introduced the Gamma-sinh Cauchy (GSC) distribution aiming at 
applying the model to quantile regression. The resulting model can be either unimodal 
or bimodal depending on the combinations of two parameters, where one of them is fxed 
and depends on the modelled quantile. Gallardo et al. (2020a) introduced a novel para-
metric quantile regression model for asymmetric response variables, where the response 
variable follows a power skew-normal distribution. Gallardo, Gómez-Déniz and Gómez 
(2020b) presented a discrete distribution by discretizing a generalized half-normal distri-
bution, which can be reparametrized for use in a regression model based on the median. 
Sánchez et al. (2020) use a model based on the Birnbaum-Saunders distribution in order 
to perform quantile regression. 
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The aim of this paper is to introduce an extension of the PM distribution using the 
methodology presented in equation (1), aiming to perform quantile regression. The re-
sulting PDF can be either strictly increasing or unimodal. The manuscript is organized 
as follows. In Section 2 we introduce the exponentiated power Maxwell (EPM) distri-
bution, and we propose the reparametrized EPM (REPM) distribution with some prop-
erties such as its CDF, hazard function (HF) and moments. In Section 3, we discuss 
the inference for the REPM regression model based on the maximum likelihood (ML) 
estimation. In Section 4 we present a simulation study in fnite samples, focusing our 
attention on parameter recovery. In Section 5 we present two applications to real data, 
ftting the REPM distribution to two real data sets. Finally, in Section 6 we present the 
main conclusions of the work. 

2. Exponentiated power Maxwell distribution 

Following the methodology related to equation (1), we introduce the following extension 
of the PM model. 

Defnition 1. A random variable W follows an exponentiated power Maxwell distribu-
tion with scale parameter ψ and shape parameters β and γ , if its CDF, PDF and HF are 
given, respectively, by: 

γ2βw 3
FY (w;ψ,β ,γ) = G , w > 0 (4)

2ψ2 , 2 !
γ−12β 2β −1 2βw 3 β w w 3

fY (w;ψ,β ,γ) = γ G g , w > 0,
2ψ2 , ψ2 2ψ2 ,2 2 

γ−12β 2βw 3 w 32β −1 Gγ G β w
2ψ2 , 2ψ2 ,2 2

hW (w;ψ,β ,γ) = γ , w > 0 
2βw 3

ψ2 1 − G 
2ψ2 , 2 

where ψ,β ,γ > 0 and g(·,a) is the PDF related to G(·,a). 

In Figure 1, we illustrate the PDF, CDF, and HF of the REPM distribution. It is 
interesting to point out that the HF can be strictly increasing, strictly decreasing, or 
have a bathtub shape. The equation for fnding the mode is immediately obtained from 
calculating the frst derivative of the density. However, we consider a parametrization 

1 
for this model based on (µ,β ,γ), where µ = ψ β . We denote this as REPM(µ,β ,γ). 
The main object of this parametrization will be justifed later. 
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Figure 1. Plots of the PDF (a), CDF (b) and HF (c) for different combinations of parameters of 
the REPM(ψ, β , γ) distribution. 

Proposition 1. If W ∼ REPM(µ,β ,γ), the rth non-central moment of W can be calcu-
lated as 

r−2βE(W r) = 
0

1 1 
rw µ

2β (1 − u)γ du 
2βw 3

β g 
2µ2β 

, 
2 

for r ≥ 1, where w = [2µ2β G−1(u,3/2)]1/(2β ), G−1 is the inverse function of G(·,a). 

Proof. By using the defnition of expectation and making the substitution u = G 
2βw 3 

, the result is immediate ■.
2ψ2 , 2 

The gamma distribution is very useful to express both the CDF and the PDF of the 
REPM distribution. However, usual quantities of interest such as he mean and mode of 
the model do not have closed form. Therefore, in order to perform regression analy-
sis in the model, other alternatives should be studied, as we illustrate in the following 
proposition. 

Proposition 2. If W ∼ REPM(µ,β ,γ), then 100 × ρ-th, the ρ-th quantile 0 < ρ < 1, is 
given by 

1/2β 
32β G−1 

ρ
1/γpρ = 2µ , , (5)

2 

Proof. It is immediate using the defnition of quantile ■. 
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Corollary 1. From proposition 2, it follows directly that the median of the REPM distri-
bution is 

1/2β 
32β G−1 0.51/γMe(w) = 2µ , .
2 

Table 1 shows the mean, variance, median and mode for different values of µ , β and 
γ . Note that the mean, variance and median increase as γ increases; all four quantities in-
crease as µ increases. It is also interesting to point out that the variance grows extremely 
as β decreases (β < 1). On the other hand 

Table 1. Mean, variance, median and mode for the REPM model with different combination of 
parameters. 

(µ,β ,γ) Mean Variance Median Mode 

(1.3,1.5,0.5) 1.403 1.386 1.365 0.347 
(1.3,1.5,1.0) 1.738 1.732 1.724 0.254 
(1.3,1.5,1.5) 1.912 1.904 1.891 0.207 
(1.3,1.5,2.0) 2.024 2.015 1.997 0.179 

(2.3,0.5,1.5) 8.566 7.230 4.545 34.909 
(2.3,1.0,1.5) 4.189 4.078 3.848 2.154 
(2.3,1.5,1.5) 3.382 3.369 3.346 0.648 
(2.3,2.0,1.5) 3.055 3.063 3.081 0.305 

(0.6,1.5,1.5) 0.882 0.879 0.872 0.044 
(1.0,1.5,1.5) 1.471 1.465 1.455 0.122 
(1.3,1.5,1.5) 1.912 1.904 1.891 0.207 
(1.6,1.5,1.5) 2.353 2.344 2.328 0.313 

γ 

FW (µ; µ,β ,γ) = G 
1 
, 
3 

= Cγ , (6)
2 2 

with C = G(1/2,3/2) = 2Φ(1) − 2φ(1) − 1 ≈ 0.199. In equation (6), we note that the 
CDF evaluated in µ depends only on the value of γ . As Cγ is a strictly decreasing 
function for γ and 0 < C < 1, the equation FW (µ; µ,β ,γ) = ρ , (for 0 < ρ < 1) has a 
unique solution for γ . Specifcally, 

log(ρ)
FW (µ; µ,β ,γ) = ρ ⇔ γ = .

log(C) 



         

      

 

  

 

 

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

γ(ρ) 1.425 0.996 0.745 0.567 0.429 0.316 0.221 0.138 0.065 

 Table 2. Value of γ(ρ) for some values of ρ . 
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For a fxed ρ , if we set γ = γ(ρ) = log(ρ)/ log(C) as fxed, then µ represents directly 
the ρth quantile of the distribution. Table 2 shows some values for γ(ρ) with different 
values for ρ . Henceforth, we will use the notation REPM(µ,β ,γ) to refer to this alterna-
tive parametrization. This is a very useful result, because in practice many characteris-

tics inherent to each observation are available. For this reason, we introduce a regression 
framework for applying the model to any quantile of the distribution. This also allows 
a more detailed relation among the covariates and the response variable than is possible 
using the regression in a single measure such as mean or median. To be more specifc, 
for a non-homogeneous population, we consider that wi(ρ), the ρ-th quantile of the re-
sponse variable, are independent and are such that wi(ρ) ∼ REPM(µi(ρ),β (ρ),γ(ρ)), 
i = 1, . . . ,n, where the quantile of such variable is related to a set of covariates, say 
xT 

i = (xi1, ...,xip), through the logarithmic link as 

log µi(ρ) = xT 
iτ(ρ), i = 1, . . . ,n, (7) 

where τ(ρ) = (τ0(ρ), . . . ,τp(ρ))
T are the regression coeffcients. These can be inter-

preted as follows: exp(τ0(ρ)) represents the value of the ρ-th quantile of the response 
variable when all covariates are fxed at 0; and exp(τ j(ρ)), j = 1, . . . , p, represents the 
percentage increment (or decrement) in the ρ-th quantile for the response variable when 
the j-th covariate is increased by one unit and the rest of the covariates are fxed. 

To avoid overloading the notation, hereinafter we use simply µi,β and γ instead of 
µi(ρ),β (ρ),γ(ρ) to specify the parameters, but understanding that in a regression model 
context, we are interested in modelling the ρ-th quantile. 

3.  Inference  

In this section, we discuss the ML estimation for the REPM regression model under 
a classical approach. Let Wi(ρ) ∼ REPM(µi,β ,γ) independent variables, where the 
ith observation is related to a set of covariates xi as in equation (7) and γ = γ(ρ) = 
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log(ρ)/ log(C) is fxed. The log-likelihood function for θ = (τT ,β ,γ)T is 

i βG
w 

2β 
, 

3 
+ n log(β ) − 2 log(µi ) + 

n n n 

β2 n 

∑22µ i 1i = 

Γ 3 2 1( / ) wβ i
∑ ∑βlog log log log√− − −( ) ( )+ ( )µw n wi ii β222 µii 1 i 1 i 1= = = 

∑ 

n 
ℓ(θ ) = n log(γ)+(γ − 1)∑ log 

i=1 

2β 
n 

+(2β − 1)∑ . 
i=1 

(8) 

The ML estimators can be obtained by maximizing equation (8), using numeri-
cal procedures such as the Newton-Raphson algorithm. As an alternative, we use the 
optim routine in the R software (R Core Team, 2021) for the L-BFGS-B method, 
which is a limited memory modifcation for the traditional Broyden-Fletcher-Goldfarb-
Shanno algorithm (BFGS), a constrained Quasi-Newton type algorithm which avoids 
the computation of the hessian matrix for the objective function and its respective in-
verse. The asymptotic variance of the ML estimators (say θb) can be estimated as fol-
lows Var\(θ) = diag(−I(θb)−1), where I(θb) is observed Fisher information evaluated in bθ , that is 

∂ ℓ(θ)
I(θb) = − . 

∂ θ∂ θ ⊤ 
θ=θ̂ 

Details about the components of this matrix can be found in appendix A. The asymp-
√ 

totic distribution of θb is n(θb− θ ) ∼ N(0,I(θb)−1),as n → +∞. 

In order to perform a residual analysis, we can use the quantile residuals (see Dunn 
and Smith (1996)) defned as 

ri = Φ−1[FW (wi; θb) ], i = 1,2, ...,n, 

where FW (wi; θb) is the CDF of the REPM model evaluated in the ML estimate of θ . 
As the ML estimator is a consistent estimator (when n → +∞), and if the model is 
appropriate for the data, r1,r2, ...,rn should be a random sample from the standard normal 
distribution. Also note that the independent observation assumption implies that the 
quantile residuals are also independent. The normality assumption can be tested, for 
instance, by a normality test such as the Kolmogorov-Smirnov (KS) (see Kolmogorov 
(1993) and Smirnov (1939)), Shapiro-Wilks (SW) (see Shapiro and Wilks (1965)) and 
Anderson-Darling (AD) (see Anderson and Darling (1952)) tests. 
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4. Simulation study 

In this section, we present a simulation study in order to assess the performance of the 
ML estimators for the REPM regression model. We considered one covariate, i.e., µi = 

τ0 + τ1xi, γ(ρ) as fxed, and the covariates x1, . . . ,xn were simulated from the standard 
uniform distribution. We considered six vectors for (β ,τ0,τ1): (2, 2, 0.5), (2, 2, 1.5), (2, 
0.5, 2), (2, 1.5, 2), (0.5, 2, 2), (1.5, 2, 2); three values for the sample size: 50, 100 and 
200; and two values for the modelled quantile: 0.50 and 0.75, totalling 36 combinations 
of parameters, sample size and quantile. Each scenario was replicated 1,000 times. To 
simulate values from the REPM model, we can use the following algorithm based on the 
inverse transform method: 

• Generate Ui ∼ U(0,1), i = 1,2, ...,n. 

1/2β 

• Compute Wi = 2µ2β G−1 U1/γ 
, 
3

.i 2 

For each sample, we compute the ML estimates and the estimated standard errors based 
on the estimated hessian matrix. Table 3 summarizes the results, considering the mean of 
the ML estimations, their standard errors (SE), the 95% coverage probability (CP) based 
on the asymptotic normality for the ML estimators and the estimated root mean squared 
error (RMSE). Note that as the sample size increases, the mean of the ML estimators is 
closer to the true value of the parameters, while the RMSE decreases, suggesting than 
the estimators are consistent for the REPM model even in a fnite sample size. Results 
also suggest that the CP terms converge to the nominal values with which they were 
built, suggesting that the asymptotic normality of the estimators is also reasonable in 
fnite samples for the REPM model. 

5. Application 

In this section we illustrate our proposal with two real data sets, comparing it with other 
proposals in the literature. In the frst application we ft the REPM model without co-
variates. We compare the results with the M, PM and gamma (G) distributions. In the 
second application we ft our proposal considering covariates, comparing results with the 
GSC, skewed Laplace (SKL) and skewed Student-t (SKT) models. Codes in R software 
(R Core Team, 2021) are avaliable as supplementary material. 



mean s.d. median interquartile range min. max. skewness kurtosis 
369.5 370.1 247.0 501.0 1.0 1529.0 1.2 3.5 
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5.1. Reinfection time data 

In certain populations the occurrence of sexually transmitted diseases blue is a major 
problem. Even those that are not lethal represent a threat that must be taken into ac-
count. Specifcally, gonorrhea and chlamydia are a focus of investigation because they 
are often asymptomatic in females. As a result they are often left untreated, which can 
lead to complications such as sterility. The following data set corresponds to the time to 
reinfection of 887 individuals by either gonorrhea or chlamydia, where the subject had 
already been infected with one of these diseases previously (see Klein and Moeschberger 
(2003)). This data set can be found in the std data included in the KMSurv R package 
(Klein, Moeschberger and Yan, 2012). 

Table 4. Descriptive analysis for the reinfection time data. 

Table 4 shows a descriptive analysis for this data set. Note that 50% of the individuals 
were reinfected within the frst 8 months. The times also present a positive skewness and 
a kurtosis slightly greater than normal distribution. Figure 5 shows the ML estimates 
for the parameters of the M, PM, G and REPM distributions. For each model we also 
present the AIC criteria, which suggest that the REPM model gives a better ft than the 
rest of the models. Figure 2 depicts the histogram with the estimated PDF and comparing 
the empirical CDF with the estimated CDF for the models discussed, showing that the 
REPM model presents a better ft for this data. Finally, Figure 3 shows the quantile-
quantile (QQ) plots for the REPM, PM and G distributions. Note that the QQ plots 
suggest that, of the three models tested, the REPM is the most appropriate for this data 
set. 

5.2. Clotting data 

This data set presents measurements of the clotting time of blood (time, in seconds) for 
normal plasma diluted to nine different percentage concentrations with prothrombin-free 
plasma (lconc, in logarithm scale) for 18 patients. It must also be considered that the 
clotting time was induced by two lots of thromboplastin (lot2, categorized as 0 and 1). 
The data (see MLGdata R package) are available in McCullagh and Nelder (1989) (p. 
302) (see R code below). 



Table 5. Maximum likelihood estimates for the data with it’s respective standard deviation in 
parenthesis for the infection time data 

Parameter M PM G REPM 
α < 0.001(0.028) 0.038 (0.004) 0.796 (0.027) — 
β — 0.321 (0.009) 0.002(< 0.001) 1.079 (0.158) 
µ — — — 578.576(0.150) 
γ — — — 0.177(0.195) 

log-likelihood −7593.0 −6053.0 −6033.8 −6013.3 
AIC 15188.0 12109.9 12071.6 
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clotting<-data.frame(time=c(118, 58, 42, 35, 27, 25, 21, 19, 

18, 69, 35, 26, 21, 18, 16, 13, 12, 12), 

lconc=c(1.609, 2.303, 2.708, 2.996, 3.401, 3.689, 4.094, 

4.382, 4.605, 1.609, 2.303, 2.708, 2.996, 3.401, 3.689, 

4.094, 4.382, 4.605), 

lot=factor(c(rep(0, 9), rep(1, 9)))) 
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Figure 2. Histogram and empirical plot for the reinfection time data. 

We aim to model the clotting time for the i-th individual using lconc, lot2 and 
the interaction between those covariates. We considered time(ρ) ∼REPM(µi,β ,γ), 
where γ = γ(ρ) = log(ρ)/ log(C) is fxed and 

µi = µi(ρ) = exp(τ0 + τ1lconci + τ2lot2i + τ3lconci × lot2i) , i = 1, ...,18, 
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Figure 3. Q-Q plot for the REPM, PM and G models for the reinfection time data. 

Table 6 presents a descriptive analysis for the global time, time for lot = 0 
(time0), time for lot = 1 (time1) and lconc for the clotting data set. We can ver-
ify that the global time has a signifcant standard deviation and is positively skewed, 
with a considerable kurtosis coeffcient. Moreover, Figure 4 shows the plots for time 

versus lconc separated by lot. 

Table 6. Descriptive analysis for the clotting data. 

variable mean s.d. median interquartile range min. max. skewness kurtosis 
global time 32.500 26.440 23.000 17.000 12.000 118.000 2.127 7.185 

time0 40.333 31.851 27.000 21.000 18.000 118.000 1.805 5.078 
time1 24.667 18.248 18.000 13.000 12.000 69.000 1.780 5.012 

Table 7 shows the AIC values and p-values obtained in the K-S test for the quan-
tile residuals, for the SKL, SKT, GSC and REPM quantile regression models different 
quantile values. Note that the AIC for the REPM is the lowest value of all the models 
(except for ρ = 0.1); the K-S test does not reject the null hypothesis that quantile resid-
uals for this model are a random sample from the standard normal distribution (except 
for ρ = 0.9) with any signifcance level, suggesting that the model is appropriate for all 
the modelled quantiles (except for ρ = 0.90). 

Figure 5 shows the ML estimator for the regression coeffcients with their their re-
spective asymptotic 95% confdence intervals. Note that lconc and lot2 are signif-
icant in explaining all the quantiles modelled. Figure 6 shows the profle density for 
the ρ-th quantile of time for ρ = 0.5 and ρ = 0.75. Note how the distribution of the 
time according to our model seems to differ from the other distributions, showing a 
better representation of the population. Regarding the interpretation of the coeffcients, 
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Figure 4. Plot for clotting data. 

for example, we can conclude that 

• For ρ = 0.5 (the median case) we obtain exp(τb1) = 0.528. This means that for a 
fxed type of thromboplastin, the median of the clotting time decreases by 47.2% 
for each unit increase in the lnonc. 

• For ρ = 0.5 (the median case) exp(τb2) = 0.490. This implies that for a fxed 
lnonc, the median of the clotting time decreases by 51.0% when the type of 
thromboplastin is changed from lot2 = 1 to lot2 = 0. 

Table 7. AIC and p-values for the K-S test of SKT, SKL, GSC, and REPM model for the clotting 
data. 

AIC K-S 
ρ SKT SKL GSC REPM SKT SKL GSC REPM 

0.10 121.130 127.916 110.820 111.367 0.003 0.003 0.186 0.431 
0.25 125.554 132.958 118.335 109.253 0.004 0.001 0.119 0.428 
0.50 133.049 143.110 129.903 111.556 0.002 < 0.001 0.250 0.247 
0.75 151.402 155.568 144.733 113.330 0.092 0.500 0.018 0.190 
0.90 149.034 150.596 167.269 130.857 0.125 0.200 < 0.001 < 0.001 
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Figure 5. ML estimation of the regression coeffcientes (with their respectively asymptotic 95% 
confdence interval), for the different values of the ρ-th quantile for the clotting data 

6. Conclusions 

Exponentiated distributions have been used to extend a variety of well-known distribu-
tion models, resulting in fexible distributions that can be applied in a greater diversity of 
scenarios. This paper proposes the REPM distribution as an alternative model by which 
to introduce covariates, obtaining interpretations related to the quantile of the distribu-
tion. Nowadays there is a reasonable set of classic distributions with positive support, 
such as the exponential, gamma, Weibull, log-normal (LN), etc. So the question nat-
urally arises “Why consider the REPM model instead of the common distribution that 
works well?”. While it is true that models like LN and G have proved to be fexible 
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Figure 6. Distribution for 0.5 (a) and 0.75 (b) quantiles of time considering lconc and lot2 
equal to 2.3 and 0, respectively. Curves in solid, dashed, dotted and dot-dash line represent 
the density functions estimated by the REPM, GSC, SKL and SKT models, respectively, for the 
clotting data 

enough to cover many situations, there are a few factors that must be borne in mind. 
For example, the LN distribution has a hazard rate function that may be unrealistic in 
some contexts, such as lifetimes data sets, since it is decreasing for long values. On the 
other hand, the G distribution, although it has a less strict hazard rate function, is not as 
fexible as the corresponding REPM model; moreover it does not have a closed function 
for the ρ-th quantile, i.e. quantile regression cannot be applied simply in this model. 
The real data applications above show that the REPM is a competent alternative to such 
traditional models. 
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A. Appendix: Score function and observed Fisher information 

We devote this section to express the components of I(θb) discussed in Section 3. 
If W ∼ REPM(θ), with θ = (µ,β ,γ)T, then we can ∂ 2 log fW (w; θ)/∂ θ∂ θ

T , as fol-
lows 

2 
∂ 2 log fW (w; θ ) 1 ∂ G(·) 1 ∂ logG(·) w ∂ g(·) 

= (γ − 1) − + log g(·)+ ,
∂β 2 G(·) ∂β g(·) ∂β µ ∂β 

2 
∂ 2 log fW (w; θ ) 1 ∂ G(·) 1 ∂ logG(·) ∂ g(·) 

= (1− γ) + − (2β − 1)u−1g(·) ,
∂ µ2 G(·) ∂ µ g(·) ∂ µ ∂ µ 

∂ 2 log fW (w; θ ) 1 
= − 

γ2 ,∂γ2 

2β 
∂ 2 log fW (w; θ ) w w w g(·)2β = −(γ − 1)w µ

−2β −1 1 + 2β log log + ,
∂β∂ µ µ µ µ G(·) 

∂ 2 log fW (w; θ ) 1 ∂ G(·) 
∂β∂γ 

= 
G(·) ∂β 

, 

∂ 2 log fW (w; θ ) 1 ∂ G(·) 
∂ µ∂γ 

= 
G(·) ∂ µ 

, 

where G(·) = G(w2β /2µ2β , 3/2), g(·) = g(w2β /2µ2β , 3/2), and 

2β

∂ G(·) w w 
= g(·) log ,

∂β µ µ 
∂ G(·) 2β = −β µ

−2β −1w g(·),
∂ µ 

2β

∂ g(·) w w 
= g(·) log 1− ,

∂β µ µ 
2β

∂ g(·) β w 
= g(·) − 1 .

∂ µ µ µ 
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Gómez, Y. and Bolfarine, H. (2015). Likelihood-based inference for the power half-
normal distribution. Journal of Statistical Theory and Applications, 14(4), 383–398. 
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