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Abstract 

In complex survey data, each sampled observation has assigned a sampling weight, 
indicating the number of units that it represents in the population. Whether sampling 
weights should or not be considered in the estimation process of model parameters 
is a question that still continues to generate much discussion among researchers in 
different felds. We aim to contribute to this debate by means of a real data based 
simulation study in the framework of logistic regression models. In order to study their 
performance, three methods have been considered for estimating the coeffcients of 
the logistic regression model: a) the unweighted model, b) the weighted model, and 
c) the unweighted mixed model. The results suggest the use of the weighted logistic 
regression model is superior, showing the importance of using sampling weights in the 
estimation of the model parameters. 
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1. Introduction 

Complex survey data are increasingly used by researchers and analysts from different 
felds. In particular, complex survey data are usually used, among other purposes, to ft 
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prediction models. These data are commonly obtained by sampling the fnite population 
that is of interest for the survey by some complex sampling design. One of the charac-
teristics of this type of data are sampling weights, which indicate the number of units 
that each sampled observation represents in the fnite population. When working with 
complex survey data, before implementing the traditional statistical techniques, most of 
which have been designed to be implemented on simple random samples, it should be 
assessed whether these techniques are valid to this kind of data (Skinner, Holt and Smith, 
1989). 

In particular, whether or not to use the sampling weights when ftting prediction 
models is a question that has been widely discussed in the literature by a number of 
researchers (Brewer and Mellor, 1973; Smith, 1981). Different perspectives can be 
adopted when ftting prediction models to survey data, which are usually denoted as 
model -and design-based approaches (Binder and Roberts, 2009; Chambers and Skin-
ner, 2003). On the one hand, the researchers that adopt the design-based perspective 
warn that if the complex sampling design, and in particular, the sampling weights are 
not considered in the estimation process of model parameters, the variances tend to 
be underestimated and biased estimates may be obtained (Binder and Roberts, 2009; 
Heeringa, West and Berglund, 2017). Therefore, they claim that the sampling weights 
should be considered in the estimation process of model parameters. 

On the other hand, from a model-based point of view, if the model is well speci-
fed the coeffcient estimates must be unbiased even though the sampling weights are 
not considered directly in the estimation process and considering them may increase 
the standard deviations of the estimates, particularly for small sample sizes (Scott and 
Wild, 1986; Reiter et al., 2005; Chambers and Skinner, 2003; Korn and Graubard, 1995). 
In this context, Rubin (1976); Scott (1977); Sugden and Smith (1984) established con-
ditions under which the sampling design may be ignored for inference purposes. As 
explained by Skinner et al. (1989) a condition for a design to be ignorable is to be nonin-
formative. A sampling design is denoted as informative if the response variable is related 
to the sampling weights, even after considering the covariates that are going to be part of 
the model (Pfeffermann and Sverchkov, 2009). Different methods have been proposed 
from the model-based perspective in order to ensure that the design is ignorable and the 
models are well specifed (Pfeffermann and Sverchkov, 2009). Researchers that adopt 
this perspective propose, among other techniques, to incorporate into the model as co-
variates all the design variables that have been considered in the sampling process and 
the interactions between them (see, e.g., DeMets and Halperin (1977); Nathan and Holt 
(1980); Gelman (2007)). 

Although it was already pointed out by Chambers and Skinner (2003), the discus-
sion between the two perspectives is still alive. Some more recent works, such as Reiter, 
Zanutto and Hunter (2005), Masood, Newton and Reidpath (2016) and Lumley and Scott 
(2017), show that this debate still generates doubts among researchers and makes it diff-
cult to decide whether or not to use sampling weights in their analyses. Most researchers 
agree that it is not advisable to ignore sampling weights if the sample is informative 
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or the model is not well specifed, but at the same time, they encourage to ignore the 
sampling weights when they are not strictly necessary. The diffculty usually lies in 
identifying whether or not sampling weights are necessary to estimate model parameters 
based on our particular survey data, or put it another way, whether or not the design is 
informative. As explained by Pfeffermann and Sverchkov (2009), informativeness de-
pends not only on the sampling design, but also on the model that is going to be ftted, 
the response variable of that model and the covariates that will be included. Therefore, 
commonly it is not easy to know whether the sampling design of the survey data to be 
analysed is informative or not to ft a particular model. In addition, it is not always possi-
ble to include all the design variables and the interactions between them in the model due 
to several reasons, such as the lack of information, the large number of design variables 
and the fact that when including design variables as covariates into the model it may lose 
scientifc interpretability (Pfeffermann and Sverchkov, 2009). Consequently, nowadays, 
it is not easy to decide in practice whether sampling weights should or not be considered 
for estimating model parameters yet. For this reason, we believe that further studies are 
needed in this area and, in particular, we consider that it is necessary to provide insight 
considering real data based simulation studies, as a complement to the theoretical results 
and case studies that have been most discussed so far. 

Throughout this work we focus on the estimation of model parameters and, in partic-
ular, on the logistic regression framework for dichotomous response variables. Although 
in general there are more studies concerned with the linear regression model (see, e.g., 
DeMets and Halperin (1977); Nathan and Holt (1980); Holt, Smith and Winter (1980); 
Hausman and Wise (1981)), a number of works have also been carried out in order to 
address this problem arising from complex samplings in the feld of logistic regression 
models. In particular, Scott and Wild (1986, 2002) work with simulated data inspired 
from a case-control study. It should be noted that case-control studies consist in stratify-
ing the data based on the dichotomous response variable, and therefore, are always based 
on informative sampling designs. But, what if we do not know whether our sampling 
design is informative or not to ft a certain model? As mentioned above, in practice, 
this is the situation that usually occurs when working with real complex survey data. 
Chambless and Boyle (1985); Lumley and Scott (2017) and Reiter et al. (2005) raise this 
issue in their analysis with real survey data and they compare several estimation meth-
ods adopting both, model- and design-based perspectives and they fnally select the most 
appropriate model for their analysis. However, how can we know in practice whether 
these differences in estimates are large or not, and if so, which of the estimates is the 
most appropriate? In this work we aim to go a step further and contribute to the work 
that has been done in the above-mentioned papers by analysing the differences among 
different methods by means of a real data based simulation study, in order to work under 
a real-life scenario that allows us to compare the coeffcient estimates to the theoretical 
ones. Hence, data were generated based on real surveys and, a priori, whether these 
data are informative or not to ft different models it is not known for us in advance. Our 
goal is to analyse by means of a simulation study a situation that frequently occurs in 
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practice and to analyse and evaluate the consequences or the effect of making the deci-
sion to consider or not the sampling weights to estimate the coeffcients of the logistic 
regression model in each situation. In this study we compare the performance of sev-
eral estimation methods that are commonly applied for estimating the coeffcients of the 
logistic regression model (see, for example, Lumley and Scott (2017)). In particular, 
we compare the coeffcient estimates obtained by: a) the unweighted logistic regression 
model, b) the weighted logistic regression model, and c) the unweighted logistic regres-
sion mixed model with random intercept. Different scenarios were defned based on a) 
data obtained from two different real surveys; and b) number of covariates/parameters 
in the model. The real surveys were designed and collected by the Offcial Statistics 
Basque Offce (Eustat) based on single-stage stratifcation with simple random sampling 
in each stratum. 

The rest of the document is organized as follows. In Section 2 we describe the two 
original real surveys that motivated this work: ESIE and PRA surveys. In Section 3 
the methods that were applied for estimating the model parameters are described. In-
formation about the simulation procedure, scenarios that were drawn and the results we 
obtained can be found in Section 4. In Section 5, we apply the described methods to real 
survey data for illustration purposes. Finally, the paper concludes with a discussion in 
Section 6. 

2. Motivating data sets 

In this section, we describe the two complex surveys that motivated this work. These 
surveys were designed and conducted by the Offcial Statistics Basque Offce (Eustat). 

On the one hand, the Information Society Survey1 in companies, which is usually de-
noted as ESIE survey for its Spanish acronym, was carried out among the companies in 
the Basque Country in order to collect information about the use of technology. In partic-
ular, the response variable that we concern about in this study is a dichotomous response 
variable that indicates whether a company has its own web-page (1) or not (0), which 
we aim to model by means of covariates such as ownership (which indicates whether 
the company is a corporation, limited liability company, public administration,...), activ-
ity or number of employees of the establishment. On the other hand, the Population in 
Relation to Activity (PRA) Survey2 was conducted among the inhabitants of the Basque 
Country aged 16 and over, with the aim of estimating the percentage of the labor force 
of the Basque Country. Specifcally, the response variable that we consider in this study 
indicates whether each individual is active (1) or not (0). Among the most important 
covariates were age, educational level, nationality, and sex. 

In both surveys, the two fnite populations were sampled based on single-stage strat-
ifcation with simple random sampling in each stratum, i.e., the populations were split 
into different strata, and a certain number of units (that were previously determined) 

1https://en.eustat.eus/estadisticas/tema 150/opt 1/tipo 7/temas.html 
2https://en.eustat.eus/estadisticas/tema 37/opt 0/temas.html 

https://en.eustat.eus/estadisticas/tema_150/opt_1/tipo_7/temas.html
https://en.eustat.eus/estadisticas/tema_37/opt_0/temas.html
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were sampled randomly from each stratum. Nevertheless, the strata were defned in very 
different ways in both surveys. In the ESIE survey, strata were defned based on the 
combination of three categorical variables which are 1) province where the company is 
located (that takes 3 categories), 2) activity of the company (in 65 categories) and 3) 
number of employees (3 categories). Therefore, a large amount of small strata, a total 
of 585 were defned. However, it should be noted that in some of these strata there are 
no units in the population, so in fact we have 515 strata in total. In contrast, in the PRA 
survey, strata are the 23 regions of the Basque Country. This causes the response vari-
able to be distributed differently in each stratum in ESIE, while in PRA, there are no 
differences of the distribution of the response variable among the strata. In both, ESIE 
and PRA surveys, once the sample was obtained from the fnite population following the 
described sampling process, a sampling weight was assigned to each sampled unit. 

In the ESIE survey, from the fnite population of 195222 companies, 7725 were sam-
pled (these data was collected in 2010). In particular, strata sizes in the fnite population 
range from 1 to 14535, where the median is 38 and the interquartile range 7 − 185.5. 
The sampling probabilities for each stratum range from 0.0061 to 1, with a median of 
0.2830 and an interquartile range of 0.0970 − 0.8417. In contrast, in the PRA survey, 
from a total of 1851316 individuals 10609 were sampled (information related to the 
last quarter of 2016). Specifcally, strata sizes range from 2768 to 438595, being the 
median 44335 and 22024 − 72834 the interquartile range. The sampling probabili-
ties range from 0.0041 to 0.0488, with a median of 0.0063 (the interquartile range is 
0.0055 − 0.0102). 

3. Methods 

In this section, we describe the methods we have considered in order to estimate the 
logistic regression coeffcients for complex survey data. 

Let Y indicate the dichotomous response variable, which takes the value 1 to indicate 
the event of interest (0 otherwise), and X = (X1, . . . ,Xp)

T the vector of p covariates. Let 
U = {1, . . . ,N} be a fnite population for which N realizations of the set of random vari-
ables (Y,X) are associated, i.e., {(yi,xi)}N

i=1. Let S be a sample of n observations drawn 
from the fnite population U by single-stage stratifcation. Let h = 1, . . . ,H indicate the 
different strata. The sampling weights associated to each sampled unit i ∈ S are denoted 
as wi. 

Let us defne the true population logistic regression model as follows: 
T 
i β Truelogit(pi) = ln [pi/(1− pi)] = x (1) 

where pi = P(Y = 1|xi) denotes the probability of event for the unit i given the values of 
= (β True ,covariates xi (∀i ∈ U) and the model coeffcients β True 

0 
computed by maximizing the population likelihood: 

β True , .1 . . ,β Tr
p )Tue are 

N 
yi 
i (1 − pi)

1−yiLpop(β ) = p .∏ 
i=1 

(2) 
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However, it should be noted that responses yi are usually known only for the sampled 
units, i ∈ S. For this reason, the model should be estimated based on the sample S. In this 
work, we compare the performance of several estimation methods that are commonly 
applied for estimating the coeffcients of the logistic regression model for dichotomous 
response variable (Lumley and Scott, 2017). The goal is to compare these estimates to 
β True in order to analyse the performance of each method. 

In this context, a simple logistic regression model can be ftted to the complex survey 
sample S, which can be defned as follows: � � 

pilogit(pi) = ln = xT 
i β . (3)

1 − pi 

Different methods can be applied to estimate the vector of regression coeffcients β = 
(β0, . . . ,βp)

T based on S: 

M1. Unweighted logistic regression model 
This method consists in estimating the model coeffcients by maximizing the like-
lihood function in equation (4) by means of some iterative algorithms such as 
the iteratively reweighted least squares (IRLS) algorithm (McCullagh and Nelder, 
1989): 

yi 1−yiL(β ) = ∏ pi (1 − pi) . (4) 
i∈S 

ˆLet us denote as β M1 the coeffcients estimated by means of the maximum likeli-
hood method, hereinafter. 

M2. Weighted logistic regression model 
This approach consists in estimating the coeffcients that maximizes the pseudo-
likelihood function in equation (5) (Binder, 1981, 1983) which considers the sam-
pling weights wi: 

yiwiPL(β ) = ∏ p (1 − pi)
(1−yi)wi . (5)i 

i∈S 

The pseudo-likelihood function is also maximized by means of iterative algo-
ˆrithms (Heeringa et al., 2017; Wolter, 2007). Let us denote as β M2 the coeffcient 

estimates obtained based on this method. 

In addition to the above-mentioned methods, another option is to ft a mixed model 
considering the complex sampling design as second level units (see, e.g. Lumley and 
Scott (2017); Masood et al. (2016)). In this study, in particular, we consider a random 
intercept model in the same way as in Lumley and Scott (2017). Let i = 1, . . . ,nh indicate 
the sampled units belonging to stratum h (∀h ∈ {1, . . . ,H}), while xhi and yhi indicate the 
values of the vector of covariates and response variable for i in stratum h, respectively. 
Then, we aim to ft the following model to our sample S: � � 

phi Tlogit(phi) = ln = xhi γ + uh, uh ∼ N(0,σu 
2). (6)

1− phi 
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T 
exhi γ+uh 

where phi = P(Y = 1|xhi,uh) = .T
1 + exhi γ+uh 

M3. Unweighted logistic regression model with random intercept 

In this case, the likelihood function is defned as follows: ZH +∞ 
Lmix(γ,σu 

2) = ∏ f (yhi|xhi,uh) f (uh)duh, (7) 
−∞h=1 

1
where f (yhi|xhi,uh) = ∏nh 

hi
yhi (1 − phi)

1−yhi and f (uh) = √ e−u2 
h/2σu 

2
. Thei=1 p 

σu 2π 
parameters γ and σ 2 are commonly estimated by maximizing the likelihood func-u 
tion in (7) numerically, usually by means of Laplace approximation (Lee and 
Nelder, 2001). Let us denote as γ̂ and σ̂ 2 those estimates, respectively, hereinafter.u 

However, the comparison of the coeffcients obtained from conditional random 
effect models and the corresponding marginal models is not straightforward (Lee 
and Nelder, 2004). In the case of logistic random intercept models, marginal 
coeffcients β can be obtained based on conditional parameters γ as follows: 

γ
β = p , (8)

1+ c2σ2 
u 

√ ˆwhere c = (16 3)/(15π) (Diggle, Liang and Zeger, 2002). Let us denote as β M3 
the coeffcient estimates obtained based on γ̂ and σ̂u 

2. 

The goal is to analyse the performance of the above-mentioned methods by compar-
ing the estimates β̂ 

M1, β̂ 
M2 and β̂ 

M3 to the true fnite population coeffcients β True . 

4. Simulation study 

In this section, we describe the simulation study that we have conducted in order to 
analyse the behaviour of the estimation methods described in Section 3 for estimating 
the coeffcients of the logistic regression model based on complex survey data under 
different scenarios. As mentioned previously, our goal in this study is to compare the 
coeffcient estimates to the true fnite population coeffcients in real data-based scenarios. 

In Section 4.1 the simulation process is described in detail and in Section 4.2 the 
results obtained in the simulation study are shown. 

4.1. Scenarios and set up 

In this section, we describe the different scenarios where the simulation study has been 
conducted and the steps we have followed. The simulation process is described below, 
step by step: 
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Step 1. Generate the pseudo-population U of N units from the set of random variables 
(Y,X) (see Appendix A): {(yi,xi)}N 

i=1. 

Step 2. Compute β True by maximizing the population likelihood in (2). 

For r = 1, . . . ,R repeat the following steps: 

Step 3. Obtain a sample Sr ⊂ U by single-stage stratifed sampling and assign the corre-
sponding sampling weights wi,∀i ∈ Sr (see Appendix B). 

r
Step 4. Fit the models to Sr by the likelihood functions in (4), (5) and (7) and obtain β̂ 

M1, 
r r

β̂ 
M2 and β̂ 

M3, respectively. 

Finally, for the results obtained based on samples r = 1, . . . ,R and for each method 
∀m ∈ {M1,M2,M3}, let us defne the bias of the coeffcient vector estimates as follows: 

β̂
r − β Truebiasd

r = d,m d , ∀d = 0,1, . . . , p. (9) 

Then, the average bias (AvBias) and the mean squared error (MSE) across ∀r = 1, . . . ,R 
are defned in equations (10) and (11), respectively: 

R R � �1 1 
β̂

r − β True 
d,m d∑ 

1r= 
∑(biasr

d) =AvBiasd ∀d = 0,1, . . . , p, (10)= ,
R R r=1 

R � �2R 

∑
1 1 

β̂ 
d
r 
,m − β True 

d 
2

∑(biasr
d)MSEd = ∀d = 0,1, . . . , p. (11)= ,

R Rr=1 r=1 

Two scenarios have been defned based on the two real surveys described in Sec-
tion 2, ESIE (Scenario 1, hereinafter) and PRA (Scenario 2, hereinafter). One fnite 
pseudo-population was generated based on each of the surveys (described in Step 1., see 
Appendix A). Those populations were sampled based on the complex sampling designs 
that were applied by Eustat in the corresponding real surveys (defned in Step 3., see 
Appendix B). A total of R = 500 samples were obtained from each pseudo-population. 

In addition, two different models were ftted to the fnite population as well as to 
the samples for each of the surveys with different number of covariates (Step 2). In 
particular, in Scenario 1 models with p = 1 (X1) and p = 3 (X1, X2 and X3) covariates 
were ftted. In the same way, in Scenario 2, the models were ftted with p = 1 (X1) and 
p = 4 (X1, X2, X3 and X4) covariates. 

It should be noted that all the covariates are categorical and one coeffcient was 
estimated for each category, except for the one considered as reference category. In 
particular, in Scenario 1, a total of l = 7 parameters (including the intercept, β0) are 
estimated for the model with p = 1 covariates and l = 14 parameters for p = 3. In the 
same way, in Scenario 2, l = 7 parameters are estimated for p = 1 and l = 14 parameters 
for p = 4. 

All computations were performed in (64 bit) R 4.0.5 (R Core Team, 2021) and a 
workstation equipped with 32GB of RAM, an Intel i7-8700 processor (3.20 Ghz) and 
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Windows 10 operating system. In particular, the unweighted logistic regression models 
(M1) were ftted by means of the glm function from the stats package, the weighted 
logistic regression models (M2) by means of the svyglm from the survey package 
(Lumley, 2019) and the unweighted mixed models with random intercept (M3) by the 
glmer of the lme4 package (Bates et al., 2015). 

4.2. Results 

In this section, we describe the results we obtained in both scenarios: Scenario 1 (which 
is based on the ESIE survey) and Scenario 2 (which is based on the PRA survey). As ex-
plained in Section 4.1, in each scenario two models were ftted with different number of 
covariates. Our goal is to compare the estimates obtained based on the three coeffcient 
estimation methods described in Section 3 (which are the unweighted logistic regression 
(M1), the weighted logistic regression (M2) and the unweighted logistic regression with 
random intercept (M3)) to the true fnite population coeffcients (β True), in terms of bias 
and MSE. 

Due to the large number of results obtained, we begin by summarizing the main 
fndings. When comparing the performance of the three methods in each scenario, we 
observe that the results differ depending on the scenario. In Scenario 1, M2 outperforms 
M1 and M3 in terms of bias and MSE, while the estimates obtained with M2 had a 
greater variance than the estimates obtained with M1 or M3. On the other hand, in 
Scenario 2, there are no differences among the results obtained with the three methods. 
The results also show that the method M2 performs correctly in both scenarios and the 
results are quite similar in terms of bias (which is negligible in all scenarios) and MSE. 
However, the performance of M1 and M3 methods in terms of bias (and consequently, 
also in terms of MSE) differ depending on the scenario, being much lower in Scenario 
2 than in Scenario 1. We proceed below to analyse the graphical and numerical results 
related to each scenario. 

Figure 1 depicts the box-plots of the bias of the estimates obtained by the methods 
M1, M2 and M3 for the models with p = 1 (Figure 1(a)) and p = 3 (Figure 1(b)) co-
variates in Scenario 1. As can be observed, M2 is the method that performs the best in 
terms of bias in both models, with either p = 1 or p = 3 covariates. This can also be 
observed in Table 1. This table describes the numerical results of the mean, standard 
deviation, average bias and MSE of those estimates, as well as the true fnite population 
coeffcients in Scenario 1 for the models with p = 1 and p = 3 covariates, respectively. 
As can be seen, while the estimates obtained by M2 method are quite similar to the true 
coeffcients (β True) obtained in the fnite population (which leads to low average biases 
for this method), the estimates obtained by M1 and M3 methods differ considerably. In 
the estimates obtained for the model with p = 1 for example, for the coeffcient β1,6 for 
instance, the average bias obtained by means of M2 method is of −0.095, which is con-
siderably lower than the one of the M1 method (0.378) and the M3 method (−1.379). It 
can also be observed that the average bias decreases for all the methods (and most no-
tably for M1 and M3) when p = 3 covariates are included into the model. This is in line 
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with Nathan and Holt (1980). In particular, the average bias of the coeffcient estimates 
related to the category β1,6 decreases to 0.050 for the M1 method, to 0.007 for M2 and 
to −0.700 for M3 in the model with p = 3 covariates. 

In Figure 1 it can also be seen that the variability of the estimates obtained based on 
the method M2 is the greatest one, comparing to the rest of the methods. This is also 
shown in Table 1, where the standard deviations of these estimates can be up to twice 
as large as that of M1 and M3. For example, the standard deviations corresponding to 
the estimates of β1,3 are 0.063, 0.132 and 0.070 for M1, M2 and M3, respectively. The 
larger variability of the weighted estimates has also been observed in previous studies 
(see, for example, Scott and Wild (1986)). The source of variability could also be related 
to data. It is especially remarkable the variability of the estimates of the coeffcient β1,2 
for all the methods in general, and most importantly for M2. It should be noted that 
there are very few units in the category 2 of the covariate X1 in Scenario 1. In particular, 
450 units in the population (0.2% of the total of units in the fnite population) take this 
category on that covariate and in the samples this amount varies from 27 (0.3%) to 53 
(0.7%) (results not shown). This may be affecting in the estimates of the parameter 
β1,2, specifcally for the M2 method. The behaviour of the estimates of β1,4 could be 
explained in the same way, for which a greater variability is also observed, especially 
for M2 (2008 units (1.0%) in the fnite population, from 178 (2.5%) to 232 (3.2%) in 
the samples). In addition, in Table 1, it should also be noted that for all the methods, 
the standard deviation of the three methods are slightly greater for the model with p = 3 
than for the one with p = 1 covariates. 

Finally, as shown in Table 1, the method M3 is, in most of the cases, the one with 
the greatest MSE, because of the large bias of the estimates based on that method. For 
instance, the MSE of the coeffcient corresponding to the category β1,4 in the model with 
p = 1 is 0.722 for the method M3, while for the M2 and M1 methods the MSE are 0.085 
and 0.378, respectively. Given that the bias decreases while adding covariates for the 
methods M1 and M3, the MSE also decreases in the same way. For the same coeffcient, 
when p = 3, the MSE related to the method M3 decreases to 0.536. The MSE of the M2 
method is quite similar in both models, with p = 1 and p = 3 covariates. Comparing the 
MSE of M2 and M1 methods it can be observed that the MSE of M1 is greater when 
p = 1. However, in Scenario 1 with p = 3, there are no differences in terms of MSE 
between M1 and M2 due to the larger variability of M2 estimates despite their smaller 
bias. 

Figure 2 depicts the box-plots of the bias of the estimates obtained by the methods 
M1, M2 and M3 for the models with p = 1 and p = 4 covariates in Scenario 2. In this 
case, as shown in Figure 2, the performance of the three methods is quite similar in terms 
of bias and variability. The differences are not considerable, neither among the different 
methods, nor between the different models (ftted with p = 1 and p = 4 covariates). Ta-
ble 2 describes the numerical results of the mean, standard deviation, average bias and 
MSE of those estimates and the true fnite population coeffcients for p = 1 and p = 4 
in Scenario 2. The average bias is very low for all the methods and in both models, either 
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(b) 

Figure 1. Box-plots of the bias of the estimates obtained by the methods M1, M2 and M3 for the 

coeffcients in the models with (a) p = 1 (l = 7) and (b) p = 3 (l = 14) covariates in Scenario 1, 

8r = 1, . . . , R. 



          

 

 

  
        

  

• 

• 
• • • 

• •• 

78 Estimation of logistic regression parameters for complex survey data 

b
ia

s
r 

b
ia

s
r 

2 

1 

0 

−1 

−2 

2 

1 

0 

−1 

−2 

b0  b1,2 b1,3  b1,4  b1,5  b1,6  b1,7 

Scenario 2: p=1 

Scenario 2: p=4 

Method 

M1 

M2 

M3 

Method 

M1 

M2 

M3 

(a) 

(b) 

b0  b1,2  b1,3  b1,4  b1,5  b1,6  b1,7 b2,2  b2,3  b2,4  b2,5  b2,6  b3,2  b4,2 

Figure 2. Box-plots of the bias of the estimates obtained by the methods M1, M2 and M3 for the 

coeffcients in the models with (a) p = 1 (l = 7) and (b) p = 4 (l = 14) covariates in Scenario 2, 

8r = 1, . . . , R. 
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with p = 1 or p = 4 covariates. The greatest observed average bias is −0.067, which 
corresponds to the coeffcient β4,2 of the model with p = 4 covariates for the method M2. 
The variability of the estimates obtained by the method M2 are usually slightly greater 
than that of the rest of the methods. However, as noted above, those differences are 
very small. The greatest difference in terms of standard deviation of the estimates and 
MSE are observed in the model with p = 4 for the coeffcient estimates corresponding to 
category β2,5. The standard deviation of the estimates obtained by means of M2 method 
is 0.185 while the ones corresponding to the M1 and M3 methods are 0.174. In the same 
way, the MSE of the M2 method for this coeffcient is 0.035 while for the methods M1 
and M3 is 0.030. It can be concluded that all the studied methods perform properly to 
estimate the fnite population model coeffcients in Scenario 2. 

5. Application to the real data sets 

In this section we apply the methods described in Section 3 to the real survey data de-
scribed in Section 2. The goal is to compare the coeffcient estimates obtained by means 
of the different methods among them. Note that in this case, the real fnite population 
coeffcients are not known. 

Table 3. Coeffcient estimates (Estimate) and their standard errors (SE) obtained by means of 
the methods M1, M2 and M3 for the ESIE survey with p = 3 covariates. 

ESIE survey 
M1 M2 M3 

Estimate SE Estimate SE Estimate SE 
β0 -2.261 0.097 -2.482 0.133 -2.217 0.140 

β1,2 1.892 0.338 1.293 0.444 1.697 0.368 
β1,3 2.490 0.107 2.718 0.161 2.337 0.119 
β1,4 2.248 0.196 2.577 0.299 2.151 0.215 
β1,5 1.550 0.084 1.721 0.111 1.458 0.094 
β1,6 2.260 0.146 2.544 0.206 2.092 0.181 
β1,7 1.341 0.103 1.130 0.133 1.197 0.119 
β2,2 -0.774 0.148 -0.613 0.189 -0.883 0.329 
β2,3 0.453 0.073 0.358 0.107 0.538 0.123 
β3,2 0.669 0.069 0.632 0.097 0.750 0.077 
β3,3 0.996 0.096 0.965 0.132 1.124 0.134 
β3,4 1.479 0.114 1.452 0.152 1.698 0.149 
β3,5 2.230 0.182 2.205 0.241 2.461 0.209 
β3,6 2.454 0.143 2.532 0.151 2.787 0.195 

One model was ftted to each of the surveys. In particular, we ftted the model with 
three covariates (p = 3) to the ESIE survey and the model with four covariates (p = 4) 



82 Estimation of logistic regression parameters for complex survey data 

to the PRA survey. Those covariates are the ones that were considered in the simulation 
study for both surveys and are also considered in the models that are applied in practice 
by Eustat. To ft those models, the three methods described in Section 3 were applied: 
the unweighted logistic regression (M1), the weighted logistic regression (M2) and the 
unweighted logistic regression with random intercept (M3). Table 3 and Table 4 depict 
the coeffcient estimates and their standard errors obtained for models ftted to the ESIE 
and PRA surveys respectively. 

Table 4. Coeffcient estimates (Estimate) and their standard errors (SE) obtained by means of 
the methods M1, M2 and M3 for the PRA survey with p = 4 covariates. 

PRA survey 
M1 M2 M3 

Estimate SE Estimate SE Estimate SE 
β0 -2.039 0.176 -2.040 0.171 -2.037 0.179 

β1,2 2.508 0.164 2.523 0.172 2.515 0.164 
β1,3 3.106 0.179 3.105 0.191 3.113 0.179 
β1,4 3.191 0.121 3.292 0.126 3.194 0.122 
β1,5 2.836 0.114 2.934 0.118 2.835 0.114 
β1,6 1.455 0.103 1.543 0.108 1.454 0.103 
β1,7 -3.170 0.184 -3.102 0.199 -3.182 0.184 
β2,2 1.005 0.174 0.899 0.177 1.016 0.174 
β2,3 1.689 0.178 1.587 0.182 1.700 0.179 
β2,4 1.167 0.171 1.056 0.170 1.170 0.172 
β2,5 2.123 0.207 1.970 0.227 2.128 0.208 
β2,6 2.357 0.192 2.177 0.201 2.360 0.193 
β3,2 -0.596 0.063 -0.546 0.067 -0.596 0.063 
β4,2 0.547 0.158 0.530 0.190 0.551 0.159 

As shown in Table 3, the coeffcient estimates, as well as their standard errors, ob-
tained by means of the three above-mentioned methods differ considerably in the ESIE 
survey. It should be noted that these differences in the estimations and their standard 
errors, could lead to considerable differences in the Wald statistic defned as the frac-
tion among those parameters. However, in this case, those differences did not affect the 
signifcance of the model parameters and all of them are statistically signifcant (results 
not shown). The largest standard errors are in most of the cases the ones obtained by 
means of the method M2. In addition, the standard errors related to the coeffcient β1,2 
are larger than any other’s, which is in line with the large variability observed in the 
simulation study for this coeffcient (in Scenario 1). Based on the results obtained in the 
simulation study, we may conclude that the model ftted by the method M2 would be the 
preferred one in this case. 
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In contrast, the coeffcient estimates and their standard errors obtained for the PRA 
survey are very similar among them, as can be observed in Table 4. This is also in 
line with the results observed in the simulation study (in Scenario 2). As expected, the 
standard errors of the estimates obtained by M2 are usually slightly greater than the rest, 
although there are not great differences, in general. 

6. Discussion 

In this work we compared the performance of three different methods to estimate model 
coeffcients in the logistic regression framework for complex survey data by means of 
a real data based simulation study. In general, the results we obtained are in line with 
the ones obtained in related works, based on either logistic (Scott and Wild, 1986, 2002; 
Lumley and Scott, 2017; Chambless and Boyle, 1985; Reiter et al., 2005) or linear re-
gression framework (DeMets and Halperin, 1977; Holt et al., 1980; Nathan and Holt, 
1980; Smith, 1981). Nevertheless, there are also some differences among this work and 
the above-mentioned studies. We proceed to comment on these similarities and differ-
ences in the following lines. 

One of the greatest differences between this study and the ones mentioned previ-
ously is that this work is a simulation study based on real survey data. The objective has 
been to work in a realistic scenario that allows us to compare the results we obtain to 
the true coeffcients of the fnite population models. Data for the simulation study have 
been simulated based on two real surveys conducted by the Offcial Statistics Basque 
Offce (Eustat). In both surveys the fnite population were sampled by single-stage strat-
ifcation. However, the strata were defned in very different ways. In the ESIE survey 
the strata were defned by means of the combination of three categorical variables with 
many categories, resulting in a total of 585 small strata. On the other hand, in the PRA 
survey, strata were defned by means of the region to which each individual belongs, 
which leads to 23 different strata. In addition to the sampling design, the impact of the 
number of covariates included in the model and the number of parameters, were also 
analysed. It should be noted that in this simulation study the theoretical model from 
which the fnite population is generated from is not known for us. Thus, we compare 
the model estimates obtained based on the methods under study to the true coeffcient 
values obtained by ftting the model to the fnite population. 

The main conclusions of this study are that the weighted logistic regression (M2) 
performed properly in both scenarios and the estimates we obtained were unbiased. In 
contrast, the behavior of the unweighted logistic regression (M1) and the unweighted 
logistic regression with random intercept (M3) depended on the scenario and on the 
number of covariates/parameters estimated in the model. In the scenario related to the 
ESIE survey, unlike in the scenario based on the PRA survey, biased estimates were 
obtained based on these two methods. These results are in line with Scott and Wild 
(1986); Holt et al. (1980); Nathan and Holt (1980) among others, which also warn about 
the bias of the unweighted coeffcient estimates in both, linear and logistic regression 
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frameworks. Scott and Wild (1986) claim that the bias of the unweighted coeffcient 
estimates is smaller when the model ftted to the sample is exactly the same as the true 
theoretical model from which the data is derived than when the model ftted is “reason-
able but not perfect”. As mentioned previously, the theoretical model from which the 
fnite population is generated from is not known for us. Nevertheless, in this study we 
have also observed that the bias becomes smaller when more covariates are included 
into the model, which would be in line with the results obtained in the above-mentioned 
studies. However, this bias is still larger than the bias obtained by means of the weighted 
logistic regression. For this reason, the message we aim to transmit with this work is 
the recommendation of ftting weighted models. In line with Reiter et al. (2005), we 
agree that comparing the estimates obtained with the unweighted model can help to de-
tect if the model is well specifed (and improve the model, if the needed variables are 
available), since a large difference between the two estimates can suggest that the ftted 
model is mis-specifed. 

The variability of the estimates obtained by the weighted logistic regression model 
is greater than that of the estimates obtained by means of the unweighted logistic re-
gression model (with and/or without random intercept) which is in line with Chambless 
and Boyle (1985); Lumley and Scott (2017); Scott and Wild (1986). These differences 
are not very large in most of the cases. However, we have observed that when there are 
few individuals in a particular category of a categorical variable, then the variability of 
the weighted estimates of the coeffcient corresponding to that category can be much 
greater than the unweighted ones. We conclude that we should be careful when we have 
categorical variables with unbalanced distribution of individuals in the categories. In 
addition, we should keep in mind that cluster sampling has not been considered in this 
simulation study and that estimates with sampling weights may show higher variability 
in this context. In addition, the mixed model is commonly used when we have clustered 
sampling, being the clusters the ones used as random effects, instead of the strata, as in 
this paper. It should be noted that in the simulation study we have conducted, it was 
unfeasible to put all the design information as fxed effect (as recommended for strata) 
because of the problems that would arise for both model estimation and interpretation. 
For this reason, we have opted to use the strata as a random effect. Through this study 
we have been able to verify that the mixed model does not provide us with advantages 
compared to the other models, but, in order to make a really fair comparison for these 
models we should also test what happens when we have a design that involves clustering 
(further research). 

We also applied the three methods under study to real survey data and the estimates 
we obtained are in line with the results observed in the simulation study. On the one 
hand, in the PRA survey, the estimates are quite similar among them, and there are 
not many differences between the standard deviations of these estimates, which leads 
us to conclude that all the studied methods work properly in this case. On the other 
hand, in the ESIE survey, there are many differences in the estimates of the parameters 
among different methods. Observing the similarities among the simulation study and the 
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application to real data sets, and taking into account that those results are also in line with 
the results obtained in similar empirical studies, such as Chambless and Boyle (1985) 
and Lumley and Scott (2017), we can assume that the weighted logistic regression would 
be preferred when working with ESIE survey data. 

We now proceed to comment on the limitations of this work. First of all, in this 
simulation study we are unable to know which is the theoretical model from which the 
data is derived due to the fact that we aimed for the simulation study to be based on 
real survey data and hence, we have focused on comparing the estimates obtained based 
on the samples with the true coeffcients of the model ftted to the fnite population. It 
should be noted that often the objective in working with survey data is to draw conclu-
sions related to that particular fnite population, and therefore, this comparative study 
makes sense in that context. For those readers who are interested in comparisons with 
the theoretical infnite population model, we suggest checking Scott and Wild (2002). 
Secondly, as mentioned above, some authors recommend including the design variables 
and the interactions between them as covariates in the model. However, in this case, and 
in particular in the case of the ESIE survey, this option would not be feasible due to the 
large number of parameters (a total of 585) to be estimated within the model. Therefore, 
we have decided to ft the mixed model, replicating in this way the comparison made by 
Lumley and Scott (2017) on real datasets (it should be noted that we considered strata 
as random effect instead of clusters, as in the referenced paper). In addition, some of 
the covariates included in the models are related to the stratifcation variables. It should 
also be noted that in this simulation study we have worked with surveys of consider-
able sample sizes, which is quite common in offcial statistics. Nevertheless, we also 
believe that it would be interesting to work with simulations based on real surveys with 
smaller sample sizes and compare the results, paying special attention to the variabil-
ity of the estimates. It should also be noted as a limitation, the fact that in this work 
we consider 100% of response, ignoring in this way the impact that non-response may 
have on the sampling weights, which is a common problem to deal with in the daily 
practice of complex survey data. Lastly, in this work we have focused on the estimation 
of the parameters of the logistic regression model. Other issues of interest, such as the 
selection of the covariates or the effect that these differences may have on the estimated 
probabilities of the individuals, are out of the scope of this work. 

To sum up, the weighted logistic regression performs properly in all the scenarios we 
have drawn. In contrast, the behavior of the unweighted logistic regression (both, with 
and without random intercept) depends on the scenario. Therefore, based on the results 
of the simulation study, we believe that not using sampling weights when necessary leads 
to worse results than using them when they are not needed. For this reason, we would 
recommend the use of the weighted logistic regression model in the context of complex 
survey data. 

Nevertheless, we are aware that the use of sampling weights is an ongoing debate. 
For instance, Lumley (2010) pointed out two points why it might be interesting not to 
use weights in certain cases. One of the reasons was the lack of software available 
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to work with them, something that is nowadays solved as they note. Another reason 
why some researchers may fnd it interesting to ignore the weights in cases where the 
estimates are similar is that greater standard errors are obtained with weighted estimates, 
involving reduction of precision. However, as the same authors point out, small biases of 
unweighted estimates cannot be reliably detected from real data and could be enough to 
give less-accurate estimates than the weighted methods. It is possible that the resistance 
of some researchers to use sampling weights comes from the feeling of not knowing how 
to work with them. For example, Gelman (2007) defned survey weighting as a “mess”. 
We would like to end this discussion with a comment on our view of the importance 
of using sampling weights in the development of a prediction model as a whole. When 
we ft prediction models, we are usually not only interested in the estimation of the 
model itself, but we are usually interested in developing good prediction models that can 
be used in daily practice. As Steyerberg and Vergouwe (2014) pointed out, several steps 
should be considered to develop valid prediction models that could be applied in practice, 
that go from the estimation of model parameters to the validation of the fnal model. 
Therefore, the authors would like to highlight the lack of tools to develop good prediction 
models as a disadvantage of using weighted techniques. Although steps are being taken 
in this direction as several works published over the last decade show (Lumley and Scott, 
2015, Yao, Li and Graubard, 2015; Lumley, 2017; Wieczorek, Guerin and McMahon, 
2022; Iparragirre et al., 2022), the authors believe that it is essential to continue research 
in this line, lose the fear of sampling weights and continue to improve techniques so that 
we can develop good prediction models considering complex sampling designs. 
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Appendices 

A. Pseudo-population generation 

This section describes the process of generating the pseudo-populations that have been 
used in the simulation study described in Section 4, in Scenario 1 (based on the ESIE 
survey) and in Scenario 2 (based on the PRA survey). 

The pseudo-population applied in Scenario 2, related to the PRA survey, is actually 
a real fnite population, for which the response variable, as well as the rest of the ex-
planatory variables, are known. This pseudo-population was obtained and provided by 
Eustat. 

In the case of Scenario 1, we have generated a pseudo-population based on the real 
fnite population and sample of the ESIE survey. Let us denote as SESIE the original sur-
vey sample and UESIE the real fnite population of size N (SESIE ⊂ UESIE). As explained 
in Section 2, a total of H strata have been defned (i.e., {1, . . . ,H}) combining informa-
tion of three categorical variables, which will be denoted as X1, X2 and X3. Therefore, 
the fnite population can be partitioned in subsets defned by means of these strata, i.e., 
UESIE = 

S 
h
H 
=1 UESIE,h. ∀h ∈ {1, . . . ,H} let us indicate as Nh the size of stratum h in the 

fnite population UESIE (UESIE,h) and as nh the size of this stratum in the sample SESIE. 
Then, the sampling weight associated to a unit j ∈ SESIE from stratum h is the following: 

Nh w j = . (12)
nh 

Our goal is to generate a pseudo-population (U) based on the known real ESIE 
survey data, for which all the information of the covariates X1, . . . ,Xp and the response 
variables Y1, . . . ,Yq will be available. This new pseudo-population U will be the same 
size as the true ESIE population (N). In order to ease the notation, the variable names 
of the pseudo-population are the same as in the real fnite population and the units of 
the real ESIE population will be denoted as j ∈ UESIE while the units that are artifcially 
generated for the pseudo-population will be denoted as i ∈ U . 

Several dichotomous response variables are available in the original survey being the 
response variable Y , the one we have applied in the simulation study, one of them. All 
possible combinations of these response variables have been examined. For instance, as-
suming that Y1, . . . ,Yq are all the response variables that are available in the survey (where 
Y ∈ {Y1, . . . ,Yq}), for some j ∈ SESIE: y j = (y1, j, . . . ,yq, j) = α , ∀α ∈ {α1, . . . ,αA}, 
where {α1, . . . ,αA} is the set of all of possible combinations of the responses. For 
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each stratum h ∈ {1, . . . ,H} and for each possible combination of the responses (i.e., 
∀α ∈ {α1, . . . ,αA}) we generate Nh,α units in the pseudo-population (U) as: 

Nh,α = ∑ w j1UESIE, h ( j) [y j = α] , (13) 
j∈SESIE 

where, � 
1, if j ∈ UESIE, h,( j) = (14)1UESIE, h 0, if j ∈/ UESIE, h, 

and � 
1 if y j = α,

[y j = α] = (15)
0 if y j ≠ α. 

In this way, Nh,α is the number of units of the pseudo-population U in stratum h, which 
take the values of responses (y1, j, . . . ,yq, j) = α . Once we repeat the process for ∀h ∈ 
{1, . . . ,H} and ∀α ∈{α1, . . . ,αA} a pseudo-population of N = ∑h∈{1,...,H} ∑α∈{α1,...,αA} Nh,α = 

w j units we generated with the information of response variables (Y , among oth-∑ j∈SESIE 

ers) and strata (hence, information fo the design variables X1, X2 and X3 will also be 
generated). 

Finally we generate the rest of the ovariates as follows ∀d ∈ {4, . . . , p} assume that 
Xd is a categorical variable with a total of K categories: {1, . . . ,K} categories. Then, for 
each unit i generated in the pseudo-population (∀i ∈ U), we generated xdi ∈ {1, . . . ,K}
following a categorical distribution (i.e., xdi ∼ Cat(πd1, . . . ,πdK)) where the probability 
corresponding to each category k ∈ {1, . . . ,K} is calculated as follows based on the 
known ESIE fnite population UESIE. Let us assume that i ∈ UESIE,h,∀h ∈ {1, . . . ,H}. 
Then, � � 

∑ j∈UESIE 
1UESIE, h ( j) xd j = k

πdk = ,∀k ∈ {1, . . . ,K}, (16)
1h( j)∑ j∈UESIE 

where 1UESIE, h ( j) is defned in (14) and, 

� � � 
1 if xd j = k,

xd j = k = 
xd j 

∀ j ∈ Uesie and ∀k ∈ {1, . . . ,K}. (17)
0 if ≠ k, 

In this way, the pseudo-population based on the ESIE survey has been generated with 
the response variable Y , the vector of explanatory variables X and the strata. 

B. Pseudo-population sampling process 

The two pseudo-populations have been sampled by single-stage stratifed sampling, in 
the same way as the real survey data described in Section 2. 

In order to sample the pseudo-population of the Scenario 1, frst, we identify how 
many units have been sampled from a stratum h, ∀h ∈ {1, . . . ,H} in the real survey 
sample SESIE (let us denote this amount as nh). Then, we sample nh units randomly 
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from stratum h from the pseudo-population U . Repeating the same process for ∀h ∈ 
{1, . . . ,H} we obtain a sample S. 

Finally, sampling weights are assigned to each sampled unit as follows. For ∀i ∈ S 
assume that i is a unit from stratum h, ∀h ∈ {1, . . . ,H}, then: 

Nh wi = , (18)
nh 

where Nh indicates the number of units in the stratum h in U , and nh the number of units 
in the stratum h in S. 
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