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Abstract 

In this paper we review some methods proposed in the literature for combining a non-
probability and a probability sample with the purpose of obtaining an estimator with a 
smaller bias and standard error than the estimators that can be obtained using only 
the probability sample. We propose a new methodology based on the kernel weighting 
method. We discuss the properties of the new estimator when there is only selection 
bias and when there are both coverage and selection biases. We perform an extensive 
simulation study to better understand the behaviour of the proposed estimator. 
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1. Introduction 

Probability sampling methods are well established by statistical offces and researchers 
as one of the primary tools for data collection in surveys. This is because when con-
trolling the sampling design, it is feasible to make valid statistical inference about large 
fnite populations using relative small samples. There exists an extensive literature on 
methods for probability sampling and design-based inferences for complex surveys. 
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However, the deployment of probability sampling methods has become more chal-
lenging, as there has been a notorious decline in response rates (Marken, 2018; Kennedy 
and Hartig, 2019) with the subsequent increase of the survey costs. In addition, new 
data sources which have arisen in recent years could be considered as alternatives to 
survey data. Examples are large volume datasets coming from sources such as passive 
data or “data lakes”, and web surveys that have the potential of providing more timely 
estimates, as well as offering easier data access and lower data collection costs than tra-
ditional probability sampling, leading to larger sample sizes. On the other hand, there are 
serious issues concerning the use of non-probability survey samples (or volunteer sam-
ples) for estimation. Non-probability surveys are those where the inclusion probability 
is not known and/or not strictly positive for any individual in the population, which is the 
case for volunteer samples obtained from the Internet or similar means. For this reason, 
non-probability surveys are often known as voluntary surveys. The primary issue with 
these data sources is that the selection mechanism, which decides what individuals are 
eventually included in the dataset, is often unknown and may induce serious coverage 
and selection biases. Coverage bias can be defned as the bias that arise from the lack of 
exhaustiveness of the sampling frame from which the sample is drawn, this is, the inabil-
ity of the sampling frame to include all the members of the target population. Selection 
bias is a term that comprises different types of errors when drawing the sample, but the 
most common in the aforementioned data sources is self-selection: the decision of being 
in the sample or not is taken by the individuals themselves, meaning that the inclusion 
probabilities are not given by the sampling design but by the participants, and therefore 
these probabilities remain unknown, constituting a non-probability sample. The gener-
alization of the results under these biases is therefore compromised. 

Despite these limitations, non-probability survey designs may be particularly useful 
in several cases. For example, they can be used in those cases where the target population 
is a small subpopulation unlikely to meet sample size requirements, or when we are 
interested in non-demographical strata which cannot be considered in a sampling design. 
Given the potential of non-probability surveys, statisticians have studied the integration 
or combination of data from probability and non-probability samples. Some reviews on 
methods of statistical data integration for fnite population inference can be consulted in 
Buelens, Burger and vanden Brakel (2018), Valliant (2020), Yang and Kim (2020) or Rao 
(2020). The number of papers that are emerging in recent years in this feld is immense. 
The importance that the topic is taking has motivated the holding of specialized sessions 
in many statistics and survey congresses as well as a special discussion paper in the 
Survey Methodology journal (vol 48, n.2). The paper of Wu (2022) ably and usefully 
summarizes the state of the literature of analysis of non-probability survey data and 
comments to the article by Bailey (2022), Elliott (2022), Lohr (2022), Meng (2022) and 
Wang and Kim (2022) deal with aspects of great interest and topicality in this subject. 

Different data integration methods, which are based on combining probability and 
non-probability samples, have been developed in the literature on survey sampling. 
These integration methods can be divided into three groups depending on the availabil-
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ity of the study variable: available in the non-probability sample only, in the probability 
sample only, or in both samples. 

Many methods consider the frst case, where the target variable has been observed 
in the non-probability sample only. In this situation, the probability sample plays an 
important role as the reference data, and can be used to increase the effciency of the 
estimates through a variety of adjustment approaches to account for the selection bias 
of non-probability samples. However, other methods were also developed from dif-
ferent perspectives according to the availability of auxiliary information. Calibration 
(Deville and Särndal, 1992; Ferri-Garcı́a and Rueda, 2018), propensity score adjustment 
(PSA) (Lee, 2006; Lee and Valliant, 2009; Castro, Rueda and Ferri-Garcı́a, 2022), kernel 
weighting (KW) (Wang et al., 2020), statistical matching (or mass imputation) (Rivers, 
2007; Beaumont, 2020), double robust estimation (Kim and Wang, 2019) and superpop-
ulation modeling (Valliant, Dorfman and Royall, 2000; Buelens et al., 2018) are relevant 
techniques to mitigate selection bias. 

When the non-probability (or volunteer) survey contains auxiliary variables but no 
study variable, Medous et al. (2022) shows how the use of a non-probability database 
can improve estimates from a probability sample and they defne a class of QR predictors 
(Särndal and Wright, 1984) asymptotically design-unbiased under certain conditions. 

In this paper we consider the third situation posed above, where the study variables 
are measured in both samples. In Section 2 we review the estimation from probability 
and non-probability samples to introduce the notation and the framework. In Section 3 
we revisit some important works in data integration for handling selection bias in our 
context. In Section 4 we adapt the kernel weighting method introduced in Wang et 
al. (2020), to data integration. First, we consider a situation where there are no cov-
erage biases (there is a one-to-one correspondence between the target population and 
the sampling frames), and we propose a KW estimator by a linear combination of bi-
ased and unbiased estimators of a population mean. When undercoverage occurs in the 
non-probability sample (the sampling frame does not include all members of the target 
population), as is usual in practice, we propose a KW estimator based on dual frame 
methodology. We derive conditions such that these proposed estimators are asymptot-
ically design-unbiased. In Section 5, we use Monte Carlo simulations to compare the 
proposed method with several models and show that the kernel weighted estimator is a 
good compromise for several setups. Finally we conclude and give perspectives in 6. 

2. Context and notation 

Let U be the target population of size N, U = {1, . . . , i, . . . ,N}. Let sv be the set of 
nv units selected from the frame Uv using a non-probability (volunteer) data collection 
method. Let sr be a probability sample of size nr selected from a frame Ur under the 
sampling design d = (Sr,Pr), where Sr is a subset of the universal sample space S and Pr 

is a probability function defned on Sr, with πi > 0 the frst order inclusion probability 
for individual i and πi j the second order probabilities for individuals i and j. Let be 
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di = 1/πi the sampling design weight of unit i. We consider a situation in which Ur and 
Uv coincide with the population under study U . That is, there are no coverage biases in 
either the probability or the non-probability sample. 

Let us denote with yi the collected value on the unit i for the target variable y and let 
xi be the observed values for individual i for a vector of covariates x. Both y and x have 
been measured in both samples. 

1The target parameter is the population mean, Y = N ∑U yi, that can be estimated from 
the probability sample using the Horvitz-Thompson estimator: 

1
∑ diyi, (1)yr = 

N i∈sr 

and from the volunteer sample with the naive estimator: 
yi 
. (2)yv = ∑ 

i∈sv 
nv 

If we assume a situation in which there are no non-sampling errors (coverage errors, 
observation errors, non-response...) the estimator yr is unbiased but if the sample size is 
small it can lead to estimates with large sampling errors. 

Let us consider the variable � 
1 i ∈ svIvi = , i = 1, ...,N. (3)
0 i ∈ U − sv 

The estimator yv is biased (Kim and Wang, 2019) and its bias is given by 

1
Ev(yv −Y N) = Ev{Cov(Iv,y)},fv 

where Ev(.) denotes the expectation under the selection mechanism model of the non-
probability sample and fv = nv/N. Thus the mean squared error (MSE) is given by the 
formula 

1
MSE(yv) = Ev{Corr(Iv, y)2}Var(Iv)Var(y).

f 2 
v 

Therefore, a non-probability sampling where Ev{Corr(Iv,y)} ̸= 0 induces a certain se-
lection bias to the results. 

In the next section we will consider how we can estimate the mean population by 
using a data integration estimator that combine information for these two independent 
surveys. 

3. Methodology in data integration for handling selection bias 

3.1. Some previous works 

Starting with the work of Elliott and Haviland (2007), these authors consider the prob-
lem of combining the two samples by means of a linear combination of the biased and 
unbiased estimators of the population mean: 
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ycom = αyr +(1 − α)yv. 

The best estimator, in terms of effciency, of this combination when the magnitude of the 
bias is known is given by: 

σr σvyv + yr(B
2 + )nr nvŷEH = σr σv 

, (4)
B2 + + nr nv 

being yv and yr the sample means, with variances σv and σr and B the bias of yv .nv nr 
In practice, the bias and variances have to be estimated using the information available 
from both samples. The bias can be estimated as the difference between the sample 
means of both samples. In addition, the authors calculate the maximal contribution of the 
non-probability sample in terms of effective sample size, the role of the non-probability 
sample size in approaching this limit and the roles of both sample sizes in estimating bias 
with enough precision. They show that a large probability sample size (1000–10000) is 
needed for reasonably precise estimates of the remaining bias in initially bias-adjusted 
non-probability sample estimators. 
Other important work is due to Disogra et al. (2011). Their proposal, based on calibra-
tion weighting, considers that auxiliary variables needed for calibration weighting must 
reliably differentiate between the probability sample and the non-probability sample. 
This calibration method has four steps: 

1. Authors do a post-stratifcation raking calibration of sr, using a set of demographic 
and geographical variables. 

2. They combine the weighted sr with the unweighted sv. The combined sample is 
then weighted according to the probability sample’s benchmarks from the previous 
step. 

3. They compare the answers from early-adopter questions between the probability 
sample from step 1 to the answers from the blended sample from step 2. 

4. They select some minimum number of early adopter questions to include in the 
raking due in Step 2. 

Therefore, this procedure requires a good selection of early adopter questions that are 
included in the two surveys and that we believe will help to differentiate the samples. 
Recently, Kim and Tam (2021) developed two estimators using combined data from 
probability sampling and non-probability sampling based on the total decomposition: 

Y = Yv +Yc, 

where Yv = ∑i∈sv yi = ∑i∈U Ivi yi and Yc = ∑i∈U−sv yi = ∑i∈U (1 − Ivi)yi. Since y is mea-
sured for all units of non-probability sampling, Yv is known. Therefore, we only have to 
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estimate Yc. Authors proposed a frst estimator where Yc is estimated using the expansion 
estimator based on the probability sample 

yDI = 
1 
(Yv + ∑ di(1− Ivi)yi).N i∈sr 

In Poisson sampling, the variance of yDI is smaller or equal to the variance of yr if a 
condition on the study variable for simple random sampling without replacement holds. 
When N is known, Kim and Tam (2021) propose to improve the previous estimator using 
the following one: � � 

1 ∑i∈sr di(1 − Ivi)yi yPDI = Yv +(N − nv) .
N ∑i∈sr di(1− Ivi) 

Authors prove that the variance of yPDI is smaller than the variance of yr for simple ran-
dom sampling. They also discuss how to improve the effciency of this data integration 
estimator by using ratio and calibration estimation. 
Other works in this matter are briefy introduced below. 

Fahimi et al. (2015) improve the blended calibration estimator provided by Disogra 
et al. (2011). Elliot (2009) develop pseudo-weights to create a representative sample us-
ing data from the non-probability sample under model assumptions that can be partially 
tested. With this approach, probability and non-probability samples can be blended, 
and the resulting sample can be treated as a probability sample with these new pseudo-
weights. Dever (2018) proposes a hybrid estimation method based on the combined data 
fle containing probability-based and nonprobability sample cases in a similar way as 
dual-frame estimation. For this hybrid estimation method , both samples cover the same 
portion of the population, referred to as common support. The common support assump-
tion is a necessary frst step and the authors propose sample matching as the method to 
evaluate this common support assumption. It is very diffcult to make this assumption 
when we work with web surveys (or social media) and with probabilistic surveys based 
on population records, as the coverage differences between these samples may be very 
large and the method cannot be applied. On the other hand, the authors do not solve the 
problem of the determination of the lambda factor that glues the samples into one data 
fle for population inferences. Wiśniowski et al. (2020) consider a Bayesian approach 
for integrating a small probability sample with a non-probability sample. They show 
that considering informative priors based on non-probability data can reduce the vari-
ance and mean squared error of the coeffcients of a linear model. 

Recently, Xi et al. (2022) do an extensive simultation study for comparing various 
weighting strategies where probability and non-probability samples are combined with 
weight normalization and raking adjustment. They apply these methods to a teen smok-
ing behaviour survey. Nekraˇ e-Lieg˙ Ciginas and Krapavickaitė (2022) considersait˙ e, ˇ 
the case of estimating proportions when a non-probabilistic sample and scraped data 
are available. Some important works (Robbins, Ghosh-Dastidar and Ramchand, 2021; 
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Rueda et al., 2022) have appeared in which probability and non-probability samples are 
combined based on the propensity score adjustment technique. In the next section, we 
explain this technique and how it has been used by these authors. 

3.2. Some estimators based on propensity score adjustment 

The key concept in a non-probability survey sample is the selection mechanism. This 
mechanism is usually unknown and requires a suitable prediction model for the inclu-
sion indicator variable. In this context, propensity scores, πvi, can be defned as the 
probability of the i-th individual of being included in the sample, P(Ivi = 1), given the 
characteristics of the unit. 
Let x be a vector of covariates measured in sv and also in sr. We make the following 
assumption: 
Assumption 1 (strong ignorability condition): the indicator variable Iv and the study 
variable y are conditionally independent given x; i.e. P(Iv = 1|x,y) = P(Iv = 1|x). 
We assume that the selection mechanism of sv verifes Assumption 1 and follows the 
model: 

πvi = P(Ivi = 1|xi) = pi(x) = m(γ,xi), i = 1, ...,N, (5) 

where m(·) is a given function with second continuous derivatives with respect to γ . 
We aim to estimate propensity scores using data from pooling both samples. The max-
imum likelihood estimator of πvi is m(γ̂,xi) where γ̂  maximizes the pseudo-likelihood 
(Chen, Li and Wu, 2020): 

m(γ,xi) 1
l̃(γ) = ∑ log + ∑ log(1− m(γ,xi)). (6)

1 − m(γ,xi) πisv sr 

The estimated propensities π̂vi = m(γ̂,xi) are thus used to readjust the propensity bias of 
the volunteer sample. 
Based on these propensities, Robbins et al. (2021) defne several estimators integrating 
the two samples. A frst estimator is calculated weighting estimators from each sample: 

yRDR1 = α1yr +(1 − α1)yv, (7) 

π
−1 

π̂
−2(∑sr )(∑sv )1 πi∗π̂vi i viwhere yv = yi/qi with qi = and α1 = .

π
−1 

π̂
−2 

π
−2 

π̂
−1N ∑sv 1−π̂vi (∑sr i )(∑sv vi )+(∑sr i )(∑sv vi ) 

For the second estimator, the authors calculate the values pi = πi/(1 − π̂vi) for all indi-
viduals in the joined s = sv ∪ sr and obtain a simple Horvitz-Thompson type estimator 
with these new weights: 

1 
yRDR2 = 

N ∑
yi/pi, (8) 

i∈s 

Let x be a set of auxiliary variables, related to y, whose population totals are known. 
Two calibration estimators are also proposed: 
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1yRDR3 = N (∑sv yi ∗ w1i + ∑sr yi ∗ w2i) where w1i and w2i are as close as possible to 1/pi 

fulflling Tx = ∑∈sv w1ixi = ∑∈sr w2ixi and the estimator: 
(∑r wi1)(∑v w2 

yRDR4 = α2yr +(1− α2)yv being α2 = i2) .
(∑r wi1)(∑v w2 

i2)+(∑r w2 
i1)(∑v wi2) 

Rueda et al. (2022) propose the combined estimator: 

yCPSA = α0yr +(1 − α0)yIPW , (9) 

ˆ1being yIPW = N ∑sv yi/π̂vi, and α0 = 
V̂1 

V 
+ 

2 
ˆ where V̂1 and V̂2 are estimators of the variance 
V2

of yr and the MSE of yIPW respectively. They also propose alternative methods that 
combine propensity score adjustment and calibration using machine learning predictive 
algorithms. 

Burakauskaitė and Čiginas (2022) consider a few ways on non-probability integra-
tion by combining generalized difference estimator and post-stratifed calibration esti-
mator with the inverse probability weighted estimating for estimating proportions in the 
survey on population by religion, native language and ethnicity in Lithuania. 

The above methods can reduce bias by using propensity scores to estimate partici-
pation rates of non-probability sample units. However, they are sensitive to propensity 
model misspecifcations and can largely increase the variance of the estimators due to 
extreme weights. A possible way to reduce the effect of extreme weights is the kernel 
weighting (KW) method Wang et al. (2020) that uses propensity scores as a measure 
of similarity, and therefore is less sensitive to model misspecifcation while avoiding the 
extreme weights that may be produced in propensity score estimation. In the next section 
we introduce the KW approach to create pseudo-weights for the non-probability sample 
and propose a new method of integration based on this KW estimator. 

4. Estimators based on kernel weighting 

The KW method was developed by Wang et al. (2020), and is a method similar to the 
PSA since both consist of creating pseudo-weights for the non-probability sample using 
auxiliary variables of a reference probability sample. However, what differentiates them 
is the way in which these new weights are generated, although as in PSA we will use 
the estimated propensities to participate in the survey. As it occurred in that case, these 
propensities can be estimated in different ways, even though the most commonly used 
one is by means of logistic regression models which may entail several disadvantages for 
large populations in comparison to modern prediction methods such as machine learn-
ing (ML) algorithms. The ML methodology does not require strong parametric model 
assumptions and therefore is robust to model misspecifcation. Recently, ML algorithms 
have been considered in the literature for the treatment of nonprobability samples (see 
e.g. Ferri-Garcı́a and Rueda (2020), Buelens et al. (2018), Kern, Li and Wang (2021), 
Chu and Beaumont (2019), Castro et al. (2021). Their fndings showed that ML methods 
have the potential to remove selection bias in nonprobability samples to a greater extent 
than logistic regression in some scenarios. 
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The KW is based on using these propensities to measure the similarity between individu-
als based on the distributions of the auxiliary variables of the reference sample sr and the 
non-probability sample sv. These similarities will be used as weights for our estimator, 
after smoothing the distances using kernel functions. 

The estimated propensity score for k ∈ sv ∪ sr is obtained as 

π̂k = EM[Îvk = 1|xk], 

where M will be one of the mentioned machine learning models to estimate this propen-
sity and � 

1 f or k ∈ svÎvk = , k ∈ sv ∪ sr.0 f or k ∈ sr 

Once we have these estimated propensities, we will calculate the distance between the 
two individuals belonging to the different samples. We defne this distance as: 

di j = π̂i − π̂ j, i ∈ sv, j ∈ sr. 

This distance between individuals will have a value between −1 and 1. We seek to 
smooth these values, which is why we use a kernel function centered at zero. There are 
many alternative kernel functions that can be used (normal function, standard normal, 
triangular, etc.), see Servy et al. (2006). The closer this distance is to zero, the more 
similar the individuals are with respect to their auxiliary variables (propensities are es-
timated depending on the values of the auxiliary variables). Moreover, the more similar 
the individuals are, the greater the proportion that the KW will assign to the original 
weight of the reference sample dk j to the i unit of the volunteer sample. This proportion 
is called the kernel weight, whose expression is as follows: 

K{di j/h}
ki j = , i ∈ sv, j ∈ sr,

∑i∈sv K{di j/h} 

where K{·} is a zero-centred kernel function Epanechnikov (1969), and h is the band-
width corresponding to that kernel function. In addition: 

∑ ki j = 1, ki j ∈ [0,1]. 
i∈sv 

The larger the value of the kernel weight ki j is, the more similar the propensities will be 
among individuals i ∈ sv and j ∈ sr. 

Once we have the kernel weights, the pseudo-weights KW can be calculated, wKW fori 
i ∈ sv which are the sum of the weights of the reference sample d j, where j ∈ sr, weighted 
by the kernel weights ki j for the unit i ∈ sv: 
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KWwi = ∑ d j ki j, i ∈ sv, j ∈ sr. 
j∈sr 

Therefore a KW estimator for the population mean is: 

KW = wyKW 
1 

∑ i yi,N i∈sv 

KW where ∑i∈sv wi = ∑ j∈sr d j, because of ∑i∈sv ki j = 1. 

The KW estimator is consistent if certain regularity conditions are met (see Appendix 
1). Furthermore Kern et al. (2021) improve the KW method by pairing it with machine 
learning, in particular, they considered conditional random forests, model-based recur-
sive partitioning, gradient tree boosting and model-based boosting for estimating the 
propensities and constructing pseudo-weights. Kernel smoothing is also used by Chen, 
Yang and Kim (2022) in the case when the study variable of interest is measured only in 
the non-probability sample. These authors consider mass imputation for the probability 
sample using the non-probability data as the training set for imputation. 

Next, we proceed to present the new proposed method based on KW in two different 
situations: frstly, if there is no coverage bias for the sample of volunteers, and secondly, 
when such bias exists. 

4.1. Blending the samples with kernel weighting 

First, we consider the situation where there is no coverage bias (Ur and Uv are equivalent 
to the population under study U). In this situation we propose a class of estimators based 
on both samples: 

yC = αyr +(1 − α)yKW , (10) 

where α is a nonnegative constant such that 0 ≤ α ≤ 1. 
We study the asymptotic properties of the proposed estimator under the framework of 
Isaki and Fuller (1982) in which the properties of estimators are established under a 
given sequence of populations and a corresponding sequence of random sampling de-
signs. 

Theorem 1. Under assumption given in Appendix 1, the proposed estimator yC → Y in 
probability as N → ∞, nv → ∞, nr → ∞ with n

N
v = O(1) and n

N
r = O(1). 

Proof. Assumptions 1a and 2a give suffcient conditions for the Horvitz-Thompson 
estimator yR to be consistent (Isaki and Fuller, 1982). Under these conditions yR → Y in 
probability as the fnite population size N → ∞. 

Under assumptions 2a-2c Wang et al. (2020) (Appendix A) proves that yKW → Y 
in probability as the fnite population size N → ∞, the survey sample size nv → ∞ and 
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the probability sample size nr → ∞ with nc/N = O(1). Then it is obtained that yC → 
αY +(1− α)Y the proposed estimator converges to Y . 
Now, we consider the problem of how select the α parameter. A simple selection for 
α is to weight each estimator by the weight that sample has in the total sample so that 
αn = nr/(nr + nv). 

An optimal choice of α can be calculated by minimizing the MSE of yC, which is 
given by 

MSE(yC) = α2V (yr)+(1 − α)2MSE(yKW )+ 2α(1− α)E((yr −Y )(yKW −Y )). 

As this equation is a quadratic equation of α , its sole extreme is found straightfor-
wardly. The values of α that minimizes this MSE are given by 

MSE(yKW ) − E((yr −Y )(yKW −Y )) 
αopt = . (11)

V (yr)+ MSE(yKW ) − 2E((yr −Y )(yKW −Y )) 

The optimal αopt can be used to defne the optimum expression 

yCopt = αopt yr +(1 − αopt)yKW . 

The optimal coeffcient αopt depends on population parameters, which are unknown 
in practice, and so yCopt cannot be calculated. 

Though the sampling procedure of the nonprobability and the probability sample can 
be treated as independent, the estimator yKW uses information from both non-probability 
and probability sample, and therefore can be correlated with yr. If we assume that the 
term E((yr −Y )(yKW −Y )) is small relative to MSE(yKW ) and V (yr), and denoting by 
V̂ (yr) the Horvitz-Thompson estimator of V (yr MSE(yKW ) an estimator for the) and [ 

MSE(yKW ), we can consider the following estimator for the population mean: 

MSE[(yKW ) V̂ (yr)yCO = yr + yKW . (12)
MSE[(yKW )+V̂ (yr) MSE(yKW )+V̂ (yr

[ ) 

An estimator for the variance of yKW can be obtained by using resampling methods 
Wolter (2007). By using resampling techniques, one can incorporate aspects of an es-
timation process into variance calculations that are not easily captured algebraically. 
Robbins et al. (2021) consider a delete-a-group jackknife for variance estimation when 
use weighting methods for blending probability and convenience samples. Rafei, Elliott 
and Flannagan (2022) and Chen et al. (2022) use bootstrap as the method for variance 
estimation when the study variable of interest is measured only in the non-probability 
sample. Wang et al. (2020) considered the jackknife method for calculating an estimator 
of the V (yKW ). The bias of yKW can be estimated by yr − yKW . 
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4.2. Blending the samples with coverage bias 

Web and social media surveys usually have a signifcant under-coverage bias. Thus, 
we consider now a more realistic situation where there is also under-coverage bias in 
the non-probability sample. Chen et al. (2020) highlight the estimation problems in 
the scenario of having zero propensity scores for certain units in the target population. 
According to these authors, the severity of the problem depends on the proportion of the 
uncovered population units and the discrepancies between the two parts of the population 
in terms of the response variables. Chen (2020) also discusses issues with incomplete 
sampling frames where units have zero propensity scores and illustrates the danger of 
applying regular procedures when the sampling frame is incomplete proposing methods 
to adjust for under coverage bias from the nonprobability sample. 

We will consider that Ur covers the entire fnite population but the frame Uv be in-
complete (Uv ⊂ U). The population of interest, U , may be divided into two mutually 
exclusive domains, ab = Uv and a = U ∩Uc . Units in sr can be divided as sr = sra ∪srab,v 
where sra = sr ∩ a and srab = sr ∩ (ab). 

Following Hartley’s idea (Hartley, 1962), we can obtain a combined estimator of Y by 
weighting the estimators obtained from each sample: 

yH (η) = 
1 
(Ŷ a + ηŶab +(1 − η)ŶKW ), (13)

N 

KW where ˆ diyi, diyi and ŶKW w yi and 0 < η < 1.Ya = ∑i∈sra Ŷab = ∑i∈srab 
= ∑i∈sv i 

Now, we denote as:   di if i ∈ sra 

d◦ =i  
ηdi 

KW (1 − η)wi 

if 
if 

i ∈ srab 
i ∈ sv 

(14) 

then 
1 

d◦yH (η) = ∑ i yi.N i∈s 

Theorem 2. Under the regularity conditions given in Wang et al. (2020) for the sampling 
design and the propensity scores, the Hartley estimator yH (η) is asymptotically unbiased 
for Y . 

Proof. Since each domain is estimated by its Horvitz-Thompson estimator, Ŷa +ηŶab 
is an unbiased estimator of ∑i∈a yi + η ∑i∈ab yi, for a given η . Under the regularity con-
ditions given in Wang et al. (2020) the estimator ŶKW is asymptotically unbiased for 
Yab = ∑i∈ab yi, thus the estimator yH (η) is asymptotically unbiased for Y . 
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Though Ur and Uv are sampled independently, the estimators Ŷa + ηŶab and ŶKW are not 
independent because, ŶKW uses information from the probability sample. In the same 
way as in the previous section, we are going to assume that this dependence is small in 
relation to the variances of the estimators, and we suppress the covariance term between 
these two estimators in the calculus of the asymptotic variance of yH (η). Under this 
assumption, the asymptotic variance of the estimator is given by the following expression 

1 
(V ( ̂V (yH (η)) = Ya + ηŶab)+V ((1− η)ŶKW )) N2 

= 
1 
(V (Ŷ a)+ η2V (Ŷab)+(1 − η)2V (ŶKW )), (15)

N2 

where V (Ŷ a) and V (Ŷab) are computed under the sampling design d =(sr, pr) and V (ŶKW ) 
under the propensity model πv. 

The choice of the value for η is an important issue. For a fxed value of η , the estimator 
is simple to implement and gives internal consistency given that the same set of adjusted 
weights is used for all variables. The value of η = 0.5 is frequently used in dual frame 
estimation (Mecatti, 2007). The value of η that minimizes the asymptotic variance in 15 
is: 

MSE(ŶKW ) − cov(Ŷa,Ŷab)
ηo = . (16)

V (Ŷab)+ MSE(ŶKW ) 

This value depends on unknown population variances and covariances. By substituting 
the variances and MSE for its sample based estimators we obtain an estimator that we 
denote by yH (opt). We note that these modifed weights are random variable and their 
variability needs to be accounted for in standard errors of estimators. 

Note. In formula 13, the true population total N is used. It is possible to use an estimator 
N̂ instead of N to construct a type-Hàjek estimator as in the paper of Chen et al. (2020). 
In our case we would frst have to decide which estimator N̂ to use. For example based 

KW only on the non-probability sample N̂1 = ∑i∈sv wi , only on the probability sample N̂2 = 
∑i insr di or some estimator based on the two samples. This choice can infuence the 
biasness and the effciency of the proposed estimator, and adds one more diffculty to the 
problem. 

5. Simulation studies 

We have conducted a simulation study to compare the effciency of some of the pro-
posed estimators based on KW. We are interested in comparing those estimators with 
some alternative estimators defned in Section 3, in the effect of the machine learning 
algorithm used in KW, in the effect of the kernel function used in the construction of 
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KW pseudo-weights and also in the effect of considering coverage bias. In order to il-
lustrate that the superiority of some estimators compared to others depends on the data, 
we defne different setups based on different artifcial populations and different sampling 
strategies. 

5.1. Populations and setups 

We consider a fnite population of size N = 500000. The variables of interest were 
designed with the objective of having various types of relationships with the covariates 
and the propensities. We consider 8 auxiliary variables x, 2 variable of interest y and 
a variable πvi which indicates the probability of being included in the non-probability 
sample. All of them were simulated as follows: 

1. The covariates x1,x3,x5 and x7 followed a Bernoulli distribution with p = 0.5, and 
x2,x4,x6 and x8 followed normal distributions with standard deviation of one and 
a mean parameter of 0 or 2, depending on the value of the previous Bernoulli 
variable. That is to say, in order to calculate x2 we relied on the variable x1 and 
if this variable was equal to 1, then the mean would be 2, or if the variable was 
equal to 0, then the mean would be 0. The same procedure was followed for the 
rest of the variables. The propensity models were ftted using all of the 8 auxiliary 
variables. 

2. The non-probability samples were drawn with a Poisson sampling design where 
the inclusion probability depends on variables x5,x6,x7 y x8 as: � �

πvi √ 
ln = −0.5+ 2.5(x5i = 1)+ 2 · 3.141593x6ix8i − 2.5(x7i = 1), i ∈ U.

1− πvi 
(17) 

3. The target variables were created in order to have different relationships with the 
covariates and the propensities were simulated according to the formulas: 

y1i = N(8,2)+ 3(x5i = 1)+ 5πi, i ∈ U ;� 
1 if y1i > 14.46 (18) 

y2i = , i ∈ U.
0 if y1i ≤ 14.46 

The threshold of 14.46 was chosen because it is equivalent to the median of the 
variable y1. 

We considered three setups. In the frst setup the probability sample was drawn by 
simple random sampling without replacement (SRSWOR) from the full popula-
tion; in the second setup the probability sample was drawn with stratifed random 
sampling by the auxiliar variable x7 and considering an allocation by strata of 1/3 
and 2/3; in the third setup, the probability sample was selected with Midzuno sam-
pling where the probabilities were proportional to a variable following a normal 
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distribution with a mean parameter dependent on the value of the auxiliar variable 
x7 and a standard deviation of 0.5. 

The aim of the described selection mechanism was to create weights with large 
variability. As a result, the mean propensity is 0.7050, with a standard deviation of 
0.3792, and thus a coeffcient of variation of 0.5379. The histogram of propensities 
πvi, i ∈ U , is provided in fgure 1. 

Figure 1. Histogram of the population propensities. 

5.2. The simulation procedure 

The frst simulation study evaluates the performance of some estimators for Y when 
there is selection bias in the estimates. We focused on the proposed estimator discussed 
in the paper, yCO, and we compared it with others estimators based on propensities. As 
a reference estimator we have considered the naive estimator that weights the estimators 

nr nvsimply by their sizes yREF = yr + yv. We also evaluate the estimators yRDR1 (7),Nr Nv 
yRDR2 (8) and yCPSA (9) that do not use calibration. 

We considered the XGBoost (Chen and Guestrin, 2016) algorithm among several 
machine learning approaches for estimating the propensities in all estimators. This al-
gorithm builds decision trees ensembles that optimize an objective function via gradient 
tree boosting (Friedman, 2001). Literature shows that PSA with gradient boosting ma-
chines provides better results than other machine learning approaches (Lee, Lessler and 
Stuart, 2010, 2011; McCaffrey, Ridgeway and Morral, 2004, 2013; Ferri-Garcı́a and 
Rueda, 2020; Rueda et al., 2022). The method depends on several hyperparameters for 
a proper functioning and in order to avoid overftting. We have considered the following 
hyperparameters: the number of trees forming the ensemble (50, 100 or 150), the weight 
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shrinkage applied after each boosting step (0.3 or 0.4), the maximum number of splits 
that each tree can contain (1, 2 or 3), the proportion of variables used in each step (0.6 
or 0.8) and the proportion of data used in each step (0.5, 0.75 or 1). 

For each setup we select 500 probability samples of size nr = 250 and 500 non-
probability samples of sizes nv = 500;1000;2000. We compute the Monte Carlo relative 
bias of the estimators: 

B1 |yb −Y |
Y∑|RB| = · 100, (19)

B b=1 

and the Monte Carlo root mean square relative error (RMSRE): vuut 
� �2B1 yb −Y

∑ 
b 1= 

RMSRE = · 100. (20)
B Y 

where B is the number of iterations, and yb is an estimate of Y , by the method under 
study, computed for the b-th sample. 

We also examine the behaviour of variance estimators. We consider the jackknife 
method used in Wang et al. (2020) to account for all sources of variability. The perfor-
mance of a variance estimator along with the point estimator yi is assessed by the length 
of the intervals obtained at 95% confdence level and their real coverage. 

Variance estimators for yKW is also calculated based on bootstrap methods. We have 
obtained similar results for RB and RMSRE for the proposed estimator yCO and we 
observed that the behaviour with respect to the other estimators is barely infuenced 
by the variance estimation method used. In the work only the results of the jackkniffe 
method are shown. 

The simulation study has been carried out using the statistical software R, and for 
its implementation we have needed the use of specifc packages of the area, such as 
NonProbEst (Castro, Ferri and Rueda, 2020), KWML (Kern et al., 2021), sampling (Tillé 
and Matei, 2021) and caret (Kuhn et al., 2022). 

5.3. Results 

Tables 1 and 2 contain the simulation results for y1 and y2 respectively for the three setups 
considering different sample sizes. In all setups, as expected, the proposed estimator 
with gradient boosting and kernel weighting (yCO) provides lower values of both |RB|
and RMSRE. The second best estimator is yCPSA, which obtains results similar to the 
frst and with the rest of the estimators we obtain higher values of the |RB| and RMSRE. 
It is also observed that the behaviour pattern in terms of reduction |RB| and RMSRE is 
similar in the three sample designs considered for the probabilistic sample. 



109 Rueda, M.M., Cobo, B., Rueda-Sánchez, J.L., Ferri, R., Castro, L. 

Table 1. Monte Carlo bias and root mean square relative error. Variable y1. 

nr = 250, nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
4.772 4.847 4.732 4.795 4.801 4.872yREF 
3.081 3.231 2.736 2.895 2.770 2.952yRDR1 
3.246 3.389 2.888 3.045 2.907 3.088yRDR2 
1.251 1.554 1.197 1.512 1.341 1.663yCPSA 
1.173 1.457 1.232 1.559 1.213 1.576yCO 

Stratifed sampling 
4.800 4.880 4.864 4.942 4.730 4.788yREF 
2.998 3.190 2.913 3.114 2.752 2.910yRDR1 
3.651 3.788 3.601 3.746 3.435 3.546yRDR2 
1.448 1.798 1.595 2.003 1.326 1.665yCPSA 
1.224 1.521 1.322 1.671 1.162 1.431yCO 

Midzuno sampling 
4.771 4.845 4.766 4.827 4.735 4.792yREF 
3.100 3.257 2.801 2.947 2.766 2.912yRDR1 
3.381 3.520 3.122 3.250 3.069 3.198yRDR2 
1.219 1.526 1.261 1.554 1.2390 1.573yCPSA 
1.010 1.393 1.141 1.412 1.124 1.425yCO 

Table 2. Monte Carlo bias and root mean square relative error. Variable y2. 

nr = 250, nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
yREF 16.229 16.653 16.199 16.547 16.396 16.775 

yRDR1 10.025 10.769 9.130 9.809 9.188 9.971 
yRDR2 10.650 11.367 9.600 10.281 9.605 10.398 
yCPSA 5.188 6.406 5.136 6.400 5.759 7.176 

yCO 4.538 5.665 4.681 5.920 5.343 6.642 
Stratifed sampling 

yREF 16.317 16.738 16.703 17.133 16.222 16.537 
yRDR1 11.010 11.734 11.012 11.772 10.518 11.068 
yRDR2 12.819 13.412 12.821 13.447 12.326 12.785 
yCPSA 5.647 7.110 5.866 7.613 5.126 6.408 

yCO 5.119 6.444 5.198 6.704 4.612 5.684 
Midzuno sampling 

yREF 16.421 16.829 16.248 16.581 16.690 17.030 
yRDR1 10.738 11.437 9.866 10.512 10.182 10.824 
yRDR2 11.634 12.271 10.771 11.382 11.020 11.632 
yCPSA 5.246 6.652 5.052 6.206 5.632 7.004 

yCO 4.706 5.903 4.490 5.583 4.965 6.163 
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Table 3. Confdence invervals’ real coverage and length. Variable y1. 

nr = 250, nv = 500 nr = 250,nv = 1000 nr = 250, nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
0.000 0.481 0.000 0.453 0.000 0.438yREF 
0.108 0.517 0.168 0.492 0.164 0.475yRDR1 
0.088 0.522 0.146 0.505 0.146 0.490yRDR2 
0.956 0.853 0.962 0.854 0.918 0.855yCPSA 
0.962 0.811 0.960 0.807 0.928 0.781yCO 

Stratifed sampling 
0.002 0.503 0.002 0.477 0.000 0.463yREF 
0.190 0.552 0.178 0.525 0.178 0.509yRDR1 
0.054 0.533 0.052 0.507 0.030 0.494yRDR2 
0.944 0.939 0.898 0.948 0.954 0.948yCPSA 
0.958 0.844 0.906 0.822 0.952 0.788yCO 

Midzuno sampling 
0.000 0.488 0.000 0.462 0.000 0.445yREF 
0.124 0.529 0.146 0.505 0.140 0.487yRDR1 
0.090 0.528 0.090 0.509 0.094 0.493yRDR2 
0.958 0.886 0.962 0.887 0.956 0.886yCPSA 
0.952 0.820 0.964 0.808 0.950 0.769yCO 

Table 4. Confdence invervals’ real coverage and length. Variable y2. 

nr = 250, nv = 500 nr = 250,nv = 1000 nr = 250, nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
yREF 0.008 0.076 0.006 0.070 0.002 0.066 

yRDR1 0.276 0.077 0.286 0.070 0.236 0.066 
yRDR2 0.242 0.077 0.252 0.071 0.232 0.068 
yCPSA 0.968 0.130 0.954 0.130 0.930 0.131 

yCO 0.950 0.118 0.954 0.119 0.904 0.116 
Stratifed sampling 

yREF 0.018 0.080 0.002 0.074 0.002 0.071 
yRDR1 0.198 0.079 0.174 0.072 0.132 0.069 
yRDR2 0.108 0.078 0.084 0.071 0.052 0.068 
yCPSA 0.944 0.139 0.924 0.140 0.976 0.140 

yCO 0.932 0.126 0.916 0.121 0.944 0.114 
Midzuno sampling 

yREF 0.010 0.077 0.002 0.071 0.002 0.068 
yRDR1 0.232 0.077 0.232 0.071 0.162 0.067 
yRDR2 0.168 0.078 0.178 0.072 0.126 0.068 
yCPSA 0.950 0.133 0.988 0.134 0.958 0.134 

yCO 0.950 0.122 0.960 0.118 0.924 0.115 
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Table 5. Monte Carlo bias and root mean square relative error of estimators changing the ML 
method. Variable y1. 

nr = 250,nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
yCO 1.156 1.406 1.162 1.428 1.260 1.570 

YCO−NNET 1.165 1.422 1.243 1.521 1.317 1.676 
YCO−K 1.165 1.418 1.165 1.438 1.270 1.610 

YCO−LR 1.197 1.468 1.279 1.568 1.339 1.695 
Stratifed sampling 

yCO 1.250 1.547 1.261 1.595 1.257 1.578 
YCO−NNET 1.389 1.713 1.379 1.773 1.474 1.829 

YCO−K 1.234 1.527 1.250 1.582 1.240 1.550 
YCO−LR 1.467 1.814 1.477 1.891 1.557 1.923 

Midzuno sampling 
yCO 1.254 1.567 1.191 1.478 1.307 1.615 

YCO−NNET 1.331 1.665 1.277 1.605 1.490 1.884 
YCO−K 1.272 1.592 1.203 1.495 1.337 1.658 

YCO−LR 1.382 1.732 1.313 1.650 1.529 1.929 

Table 6. Monte Carlo bias and root mean square relative error of estimators changing the ML 
method. Variable y2. 

nr = 250,nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
yCO 5.144 6.264 4.932 6.105 5.115 6.378 

YCO−NNET 5.510 6.760 5.315 6.554 5.618 6.840 
YCO−K 5.107 6.278 5.023 6.240 5.057 6.334 

YCO−LR 5.739 7.011 5.558 6.903 5.842 7.101 
Stratifed sampling 

yCO 5.045 6.334 5.151 6.566 5.200 6.455 
YCO−NNET 5.449 6.848 5.870 7.472 6.058 7.461 

YCO−K 4.967 6.312 5.240 6.716 5.553 6.837 
YCO−LR 5.593 7.028 5.939 7.508 6.197 7.615 

Midzuno sampling 
yCO 4.781 5.868 4.9700 6.309 5.137 6.327 

YCO−NNET 5.290 6.467 5.683 6.972 5.432 6.698 
YCO−K 4.922 6.078 5.175 6.454 5.086 6.292 

YCO−LR 5.520 6.717 5.807 7.124 5.592 6.916 

Tables 3 and 4 show the real coverages and lengths of the corresponding 95% conf-
dence intervals. The coverage of intervals based on estimators yREF , yRDR1 and yRDR2 are 
very low, as expected, due to the bias in the estimates. On the contrary, the proposed es-
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Table 7. Confdence invervals’ real coverage and length changing the ML method. Variable y1. 

nr = 250,nv = 500 nr = 250, nv = 1000 nr = 250,nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
yCO 0.974 0.812 0.948 0.805 0.924 0.780 

YCO−NNET 0.970 0.830 0.956 0.839 0.918 0.858 
YCO−K 0.970 0.823 0.960 0.820 0.936 0.821 

YCO−LR 0.970 0.854 0.956 0.867 0.916 0.876 
Stratifed sampling 

yCO 0.946 0.845 0.930 0.820 0.916 0.784 
YCO−NNET 0.926 0.905 0.932 0.915 0.926 0.929 

YCO−K 0.954 0.854 0.938 0.849 0.936 0.849 
YCO−LR 0.918 0.936 0.924 0.951 0.920 0.963 

Midzuno sampling 
yCO 0.914 0.823 0.952 0.804 0.918 0.770 

YCO−NNET 0.922 0.860 0.940 0.875 0.892 0.882 
YCO−K 0.930 0.835 0.952 0.827 0.912 0.829 

YCO−LR 0.918 0.893 0.950 0.901 0.908 0.911 

timator yCO and yCPSA have good performance, having the intervals a real coverage close 
to the nominal coverage. With respect to the length of the intervals, as we expected, the 
yCO estimator is the one with the shortest length for all types of sampling considered, 
sample sizes and type of variable. The KW is intended to reduce variance and indeed it 
succeeds for these scenarios and variables. 

Table 8. Confdence intervals’ real coverage and length changing the ML method. Variable y2. 

nr = 250,nv = 500 nr = 250, nv = 1000 nr = 250,nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
yCO 0.940 0.118 0.938 0.120 0.926 0.119 

YCO−NNET 0.906 0.124 0.926 0.125 0.900 0.126 
YCO−K 0.954 0.120 0.944 0.120 0.938 0.120 

YCO−LR 0.920 0.128 0.916 0.130 0.900 0.130 
Stratifed sampling 

yCO 0.950 0.127 0.928 0.120 0.898 0.116 
YCO−NNET 0.944 0.138 0.930 0.139 0.942 0.139 

YCO−K 0.960 0.128 0.952 0.127 0.950 0.127 
YCO−LR 0.938 0.140 0.920 0.140 0.946 0.143 

Midzuno sampling 
yCO 0.952 0.120 0.934 0.120 0.900 0.114 

YCO−NNET 0.964 0.130 0.914 0.130 0.958 0.133 
YCO−K 0.962 0.123 0.944 0.121 0.958 0.122 

YCO−LR 0.958 0.134 0.930 0.135 0.952 0.137 
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5.4. Infuence of the machine learning method 

In the previous simulation we used gradient boosting machine as a machine learning 
method, but different methods can be used. In this case we are going to make a compar-
ison of the most used machine learning methods to see if the results are infuenced by 
them. Specifcally, we are going to compare neural networks (NNET), K-nearest neigh-
bours (K) and logistic regression (LR) with respect to gradient boosting machine for 
qualitative and quantitative variables y1 and y2 considering the three types of sampling 
and for the different sample sizes. The results obtained in the comparative study can be 
seen in the Tables 5, 6, 7 and 8. 

When comparing the |RB| and the RMSRE values for y1 for all sample sizes (Table 
5), we can see that in simple random sampling and Midzuno sampling the smallest val-
ues are found for yCO, in the case of stratifed sampling, the smallest values are found in 
YCO−K . For y2 (Table 6) the results obtained for the gradient boosting machine and K-
nearest neighbours method are similar if we compare the |RB| and the RMSRE values. 
When looking at the Tables 7 and 8 for y1 it can be observed that the greatest coverage 
(0.91-0.97) obtained is given in the case of the gradient boosting machine and K-nearest 
neighbours methods. For y2 the K-nearest neighbours method obtains the greatest cover-
age (0.93-0.96). With respect to the length of the confdence interval, gradient boosting 
machine obtains the smallest values and logistic regression model obtains the largest. 
The performance of the logistic regression was to be expected since the propensities do 
not depend on all the covariates and there is an error in the propensity model specifca-
tion. 

Table 9. Monte Carlo bias and root mean square relative error of estimators changing the kernel. 
Variable y1. 

nr = 250,nv = 500 nr = 250, nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
yCO 1.160 1.448 1.144 1.437 1.261 1.578 

Ŷ 
CO−SN 1.164 1.449 1.140 1.435 1.264 1.577 

Ŷ 
CO−T SN 1.161 1.451 1.145 1.437 1.261 1.577 

Stratifed sampling 
yCO 1.245 1.573 1.414 1.734 1.210 1.492 

Ŷ 
CO−SN 1.250 1.579 1.389 1.703 1.206 1.492 

Ŷ 
CO−T SN 1.256 1.597 1.389 1.719 1.110 1.489 

Midzuno sampling 
yCO 1.221 1.540 1.229 1.513 1.312 1.631 

Ŷ 
CO−SN 1.220 1.536 1.232 1.518 1.308 1.626 

Ŷ 
CO−T SN 1.230 1.548 1.231 1.518 1.320 1.632 

https://0.93-0.96
https://0.91-0.97
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Table 10. Monte Carlo bias and root mean square relative error of estimators changing the 
kernel. Variable y2. 

nr = 250,nv = 500 nr = 250, nv = 1000 nr = 250,nv = 2000 
|RB| RMSRE |RB| RMSRE |RB| RMSRE 

Simple random sampling without replacement 
yCO 4.641 5.762 4.839 6.070 5.012 6.378 

Ŷ 
CO−SN 4.567 5.679 4.832 6.088 5.002 6.335 

Ŷ 
CO−T SN 4.627 5.776 4.783 6.041 5.040 6.409 

Stratifed sampling 
yCO 5.215 6.627 4.902 6.175 5.069 6.298 

Ŷ 
CO−SN 5.199 6.612 4.991 6.250 5.064 6.332 

Ŷ 
CO−T SN 5.271 6.631 4.988 6.230 5.099 6.377 

Midzuno sampling 
yCO 4.657 5.873 5.122 6.274 4.966 6.211 

Ŷ 
CO−SN 4.736 5.896 5.202 6.311 5.014 6.263 

Ŷ 
CO−T SN 4.617 5.870 5.220 6.375 4.993 6.256 

Table 11. Confdence intervals’ real coverage and length changing the kernel. Variable y1. 

nr = 250,nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
yCO 0.946 0.812 0.962 0.807 0.918 0.782 

ŶCO−SN 0.956 0.814 0.966 0.811 0.920 0.790 
Ŷ 

CO−T SN 0.950 0.812 0.968 0.810 0.918 0.789 
Stratifed sampling 

yCO 0.946 0.843 0.912 0.828 0.948 0.785 
ŶCO−SN 0.954 0.851 0.930 0.831 0.936 0.791 

Ŷ 
CO−T SN 0.932 0.843 0.932 0.831 0.946 0.793 

Midzuno sampling 
yCO 0.930 0.821 0.958 0.807 0.912 0.777 

ŶCO−SN 0.942 0.825 0.960 0.813 0.910 0.782 
Ŷ 

CO−T SN 0.932 0.821 0.958 0.810 0.914 0.785 

5.5. Infuence of the kernel function 

In the previous simulations we used the tringular distribution as kernel function in the 
construction of KW pseudo-weights, but different distributions can be used. In this case 
we are going to make a comparison of the distribution implemented in the R package 
Boosted Kernel Weighting (Kern et al., 2021) to see if the results are infuenced by them. 
Specifcally, we are going to compare triangular, standard normal (SN) and truncated 
standard normal (TSN) for qualitative and quantitative variables y1 and y2 considering 
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Table 12. Confdence intervals’ real coverage and length changing the kernel. Variable y2. 

nr = 250,nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 
Coverage Length Coverage Length Coverage Length 

Simple random sampling without replacement 
yCO 0.944 0.118 0.940 0.118 0.932 0.117 

ŶCO−SN 0.958 0.120 0.934 0.121 0.930 0.119 
Ŷ 

CO−T SN 0.956 0.119 0.936 0.121 0.932 0.119 
Stratifed sampling 

yCO 0.924 0.125 0.954 0.121 0.922 0.114 
ŶCO−SN 0.926 0.126 0.944 0.122 0.926 0.117 

Ŷ 
CO−T SN 0.938 0.126 0.944 0.122 0.916 0.117 

Midzuno sampling 
yCO 0.952 0.121 0.942 0.119 0.920 0.117 

ŶCO−SN 0.950 0.123 0.942 0.122 0.918 0.117 
Ŷ 

CO−T SN 0.948 0.122 0.936 0.120 0.916 0.117 

the three types of sampling and for the different sample sizes. The results obtained in 
the comparative study can be seen in the Tables 9, 10, 11 and 12. 

Table 13. Monte Carlo bias and root mean square relative error of estimators with coverage 
bias. Variable y1. 

nr = 250,nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 

yREF 

|RB|
5.541 

RMSRE 
5.615 

|RB|
5.581 

RMSRE 
5.649 

|RB|
5.554 

RMSRE 
5.619 

yRDR1 3.279 3.427 3.295 3.421 3.175 3.304 
yRDR2 3.233 3.409 3.198 3.358 2.999 3.166 
yCPSA 1.267 1.574 1.213 1.535 1.220 1.543 

yCO 1.258 1.563 1.209 1.529 1.204 1.520 
yH(opt) 1.195 1.486 1.125 1.426 1.132 1.446 

Table 14. Monte Carlo bias and root mean square relative error of estimators with coverage 
bias. Variable y2. 

nr = 250, nv = 500 nr = 250,nv = 1000 nr = 250,nv = 2000 

yREF 

|RB|
19.689 

RMSRE 
20.085 

|RB|
19.689 

RMSRE 
20.085 

|RB|
19.689 

RMSRE 
20.085 

yRDR1 12.210 12.828 12.210 12.828 12.210 12.828 
yRDR2 12.118 12.794 12.118 12.794 12.118 12.794 
yCPSA 5.359 6.623 5.359 6.623 5.359 6.623 

yCO 5.375 6.648 5.375 6.648 5.375 6.648 
yH(opt) 5.258 6.453 5.258 6.453 5.258 6.453 
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The values of |RB| and the RMSRE are similar for the kernel functions used, so we 
can say that there is no infuence of the kernel function in this study. Regarding coverage, 
we see that in all cases it is quite good, moving around 0.91–0.96, obtaining the shortest 
length of the interval in most cases in the yCO estimator. 

5.6. Results under coverage bias 

In order to check the behaviour of the Hartley estimator yH(opt), proposed in section 4.2, 
we have repeated the previous simulation but now we include a mechanism to reproduce 
coverage bias in our simulation. This context is compared with the same estimators 
considered in the frst simulation. 

The probability sample is selected by SRSWOR from the full population but the 
non-probability sample is now selected from a frame Uv created from the population U 
containing only individuals whose variable x5 = 1 (related to target variables). 

In Tables 13 and 14 values of |RB| and the RMSRE can be seen for each of the 
considered estimators. 

As expected, all the estimators considered now have greater bias than in the previous 
simulation. We observe that the estimators yCPSA and yCO continue to be better than the 
other PSA-based estimators in terms of |RB| and RMSRE reduction. As expected, the 
estimator based on dual frames, yH (opt), is the one that produces estimates with less 
|RB|, and consequently is also able to reduce the RMSRE compared to its competitors. 

6. Discussion 

In the last decade, survey research has witnessed the surge of non-probability sampling 
as a feasible alternative to probability sampling. In theory, the superiority of probability 
sampling should be clear, as it has a theoretical basis in design-based inference allowing 
for unbiased estimation of population parameters along with the calculation of exact 
sampling error. However, they are very expensive and usually have small sizes. Non-
probability samples can offer some advantages in that sense, as they can be deployed 
in many relatively inexpensive ways, but they lack an underlying mathematical theory 
given their usual lack of design. This is troublesome with respect to achieving accuracy 
and representativeness for estimates derived from such samples. 

Given their potential, many efforts have been undertaken in recent years to combine 
both probability and nonprobability samples to produce a single inference which may 
be able to overcome the limitations of each method, resulting in a rich literature on 
data integration in fnite populations. Most of this literature is based on considering 
a framework where the variables of interest have not been observed in the probability 
sample. In this paper, we have considered the problem of observed study variables in 
both the non-probability sample and the probability sample, in presence of auxiliary 
information. 

Since both samples contain the same variables, we propose a methodology to com-
bine two surveys based on probability and non-probability samples with the help of ma-

https://0.91�0.96
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chine learning algorithms, in order to obtain reliable estimations with small variance. We 
have introduced a general class of estimators, based on the kernel weighting method, and 
studied theoretically their bias properties. Using simulations we have also compared the 
proposed estimators with other methods for integrating probability and non-probability 
samples developed in the literature in different simulation setups, both in terms of |RB|
and RMSRE. 

The simulation study indicates that |RB| and RMSRE of estimators can be reduced 
when combining the probability and the non-probability sample using the KW method 
proposed here in the case where there is a relationship between the variable of interest 
and the participation probability. We also observed that the choice of the ML method 
used for propensity predictions is very important and can infuence the estimates ob-
tained. However, the kernel function in the construction of KW pseudo-weights does 
not infuence the estimates obtained. From our simulation study we also deduce that in 
case the sample of volunteers has a coverage bias, it is appropriate to use an estimator 
based on dual frames that allows this bias to be treated as well. 

These methods can be implemented using freely available statistical packages such 
as R. The R code used for the simulation study and the computation of the results are 
available on request. However, the computational cost of resampling should be men-
tioned. Many of the proposed methods rely on variance estimation techniques which in-
volve resampling. For each iteration, a new model has to be trained and the calculations 
have to be repeated, considerably slowing down the process. Therefore, they should be 
avoided when execution time is of the essence and many variables are involved. 

Some other papers (Elliot (2009), Dever (2018)) also combine the pseudo-weighted 
nonprobability and probability samples frst and estimate the fnite population mean 
from the combined sample. When pseudo-weighted samples are combined, the assigned 
weights only depend on the sample sizes, the design weights and the estimated propen-
sities, which do not depend on the variable under study. Thus, the same weights are used 
to make estimates for all variables, but for some variables the procedure may not be able 
to eliminate voluntariness biases. On the contrary, the method that we propose depends 
on each variable under study, and takes into account the voluntariness bias that may be 
important for those variables that are correlated with the probability of participating in 
the survey of volunteers, which is the case that interests us. 

In our proposal we have considered non parametric methods to estimate the un-
derlying propensity model that refect the self-selection process, which provides added 
fexibility over logistic regression-based methods. Some recent works also use non-
parametric methods to make inferences for non-probability samples. Chen et al. (2022) 
use kernel smoothing while Yang, Kim and Hwang (2021) use nearest neighbor for mass 
imputation for the probability sample using the non-probability data as the training set. 
Our method differs from these works fundamentally in two aspects: in our case the 
variable under study is observed in the two samples, and we use the inverse propensity 
weighting methodology while they use mass imputation. 
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Our advice to practitioners is that the use of probability samples remains essential 
to obtain reliable estimates based on an accepted theory such as sampling theory (Beau-
mont, 2020), but complementing the probability sample with a non-probability sample 
can serve a means to reduce the errors in the estimates. 

There is a lot of room for future research to improve estimation by mean integra-
tion: other similarity measures and other weighting adjustment methods such as weight 
smoothing for multipurpose surveys (Ferri-Garcı́a et al., 2022) can be considered. In this 
work only the estimation of means and totals has been considered, but the method can 
be applied, with certain adjustments, to the case of other non-linear parameters such as 
distribution functions or quantiles. In addition, new alternative methods for estimation 
from a nonprobability sample continue to emerge. Liu and Valliant (2023) introduces 
one method of weighting that assign a unit in the nonprobability sample the weight from 
its matched case in the probability sample. These new methods can be used as an alter-
native to kernel weighting to build estimators similar to our proposal. These issues will 
be future research topics. 
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A. Appendix 1 

Regularity conditions for the HT estimator 

The frst and second order probabilities verify: 

1a) N−2 
∑

N
i̸= j=1(πiπ j − πi j)

r = O(n−2rδ ) 

2a) N−1 
∑

N
i=1(yi/πi −Y/n)2k < M < ∞ for δ > 0 and r−1 + k−1 = 1 

Regularity conditions for the KW estimator: 

The kernel function K(u), the bandwidth h and the sampling schemes verify: R 
2a) K(u), K(u)du = 1, supu |K(u)| < ∞, y lim|u|→∞ |u||K(u)| = 0 

2b) h = h(nv), h → 0, but nvh → ∞ as nv → ∞ and the distributions of the estimated 
propensity scores in the probability and non-probability samples are interchangeables. 
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